已知a是實(shí)數(shù),函數(shù)f(x)=2ax2+2x-3-a
(1)若f(x)≤0在R上恒成立,求a的取值范圍.
(2)若函數(shù)y=f(x)在區(qū)間[-1,1]上恰有一個(gè)零點(diǎn),求a的取值范圍.
分析:(1)討論a 是否為0,當(dāng)a≠0時(shí),利用二次函數(shù)恒小于0,即開(kāi)口向下,△<0即可解決;
(2)討論a 是否為0,當(dāng)a≠0時(shí),考慮△=0的情況以及在[-1,1]上具有單調(diào)性用零點(diǎn)定理解決.
解答:解:(1)當(dāng)a=0時(shí),f(x)=2x-3≤0在R上不可能恒成立,不合題意,∴a≠0(2分)
當(dāng)a≠0時(shí),必需
2a<0
△=4+8a(a+3)≤0
,解得
-3-
7
2
≤a≤
-3+
7
2
(5分)
綜上,a的取值范圍為[
-3-
7
2
,
-3+
7
2
]
(6分)
(2)①當(dāng)a=0時(shí),f(x)=2x-3,顯然在[-1,1]上沒(méi)有零點(diǎn),所以a≠0.(8分)
②當(dāng)a≠0時(shí),1°△=4+8a(3+a)=8a2+24a+4=0且-
2
2×2a
∈[-1,1]
,解得a=
-3-
7
2
(11分)
    2°f(-1)•f(1)=(a-1)(a-5)≤0,解得1≤a≤5(13分)
綜上,a的取值范圍為[1,5]∪{
-3-
7
2
}
(14分)
點(diǎn)評(píng):本題考查二次函數(shù)與方程之間的關(guān)系,二次函數(shù)在給定區(qū)間上的零點(diǎn)問(wèn)題,要注意函數(shù)圖象與x軸相切的情況,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a是實(shí)數(shù),函數(shù)f(x)=x2(x-a).
(Ⅰ)若f′(1)=3,求a的值及曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(Ⅱ)求f(x)在區(qū)間[0,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a是實(shí)數(shù),函數(shù)f(x)=2ax2+2x-3-a,如果函數(shù)y=f(x)在區(qū)間[-1,1]上有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a是實(shí)數(shù),函數(shù)f(x)=
43
ax3+x2-(a+5)x
,如果函數(shù)y=f(x)在區(qū)間[-1,1]上不單調(diào),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•河西區(qū)二模)已知a是實(shí)數(shù),函數(shù)f(x)=x3-(a+
32
)x2
+2ax+1
(Ⅰ)若f′(2)=4,求a的值及曲線(xiàn)y=f(x)在點(diǎn)(2,f(2))處的切線(xiàn)方程;
(Ⅱ)求f(x)在區(qū)間[1,4]上的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案