【題目】甲、乙兩地相距1000,貨車(chē)從甲地勻速行駛到乙地,速度不得超過(guò)80,已知貨車(chē)每小時(shí)的運(yùn)輸成本(單位:元)由可變成本和固定成本組成,可變成本是速度平方的倍,固定成本為元.
(Ⅰ)將全程運(yùn)輸成本(元)表示為速度()的函數(shù),并指出這個(gè)函數(shù)的定義域;
(Ⅱ)為了使全程運(yùn)輸成本最小,貨車(chē)應(yīng)以多大的速度行駛?
【答案】(Ⅰ)(Ⅱ)當(dāng)(元)時(shí),火車(chē)以的速度行駛,全程運(yùn)輸成本最。寒(dāng)(元)時(shí),火車(chē)以的速度行駛,全程運(yùn)輸成本最小
【解析】
試題分析:(1)解決應(yīng)用題問(wèn)題首先要解決閱讀問(wèn)題,具體說(shuō)就是要會(huì)用數(shù)學(xué)式子正確表示數(shù)量關(guān)系,本題中全程運(yùn)輸成本等于每小時(shí)運(yùn)輸成本與全程所化時(shí)間的乘積,有學(xué)生錯(cuò)誤將每小時(shí)運(yùn)輸成本理解為全程運(yùn)輸成本,其次要注意定義域的確定,不僅要從保證數(shù)學(xué)式子的有意義考慮,而且更要結(jié)合實(shí)際意義考慮,如本題速度為正數(shù),(2)研究對(duì)應(yīng)解析式的最值問(wèn)題,一般從不等式或函數(shù)考慮,從不等式考慮時(shí),要會(huì)將解析式轉(zhuǎn)為“和”與“積”的關(guān)系,注意等于號(hào)是否取到,而從函數(shù)考慮時(shí),經(jīng)常結(jié)合導(dǎo)數(shù)進(jìn)行研究.本題不管從不等式考慮還是從函數(shù)考慮,都需進(jìn)行討論,討論的原因都是因?yàn)槎x域.
試題解析:(1)可變成本為,固定成本為元,所用時(shí)間為.
,即4分
定義域?yàn)?/span>5分
(2)
令得7分
因?yàn)?/span>
所以當(dāng)即時(shí),為的減函數(shù),
在時(shí),最小. 9分
所以當(dāng),即時(shí),
極小值 |
在時(shí),最小. 13分
(答)以上說(shuō)明,當(dāng)(元)時(shí),貨車(chē)以的速度行駛,全程運(yùn)輸成本最小;當(dāng)(元)時(shí),貨車(chē)以的速度行駛,全程運(yùn)輸成本最小. 14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲同學(xué)參加化學(xué)競(jìng)賽初賽,考試分為筆試、口試、實(shí)驗(yàn)三個(gè)項(xiàng)目,各單項(xiàng)通過(guò)考試的概率依次為、、,筆試、口試、實(shí)驗(yàn)通過(guò)考試分別記4分、2分、4分,沒(méi)通過(guò)的項(xiàng)目記0分,各項(xiàng)成績(jī)互不影響.
(Ⅰ)若規(guī)定總分不低于8分即可進(jìn)入復(fù)賽,求甲同學(xué)進(jìn)入復(fù)賽的概率;
(Ⅱ)記三個(gè)項(xiàng)目中通過(guò)考試的個(gè)數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分14分)如圖,三角形所在的平面與長(zhǎng)方形所在的平面垂直,,,.
(1)證明:平面;
(2)證明:;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】進(jìn)入春天,大氣流動(dòng)性變好,空氣質(zhì)量隨之提高,自然風(fēng)光越來(lái)越美,自駕游鄉(xiāng)村游也就越來(lái)越熱.某旅游景區(qū)試圖探究車(chē)流量與景區(qū)接待能力的相關(guān)性,確保服務(wù)質(zhì)量和游客安全,以便于確定是否對(duì)進(jìn)入景區(qū)車(chē)輛實(shí)施限行.為此,該景區(qū)采集到過(guò)去一周內(nèi)某時(shí)段車(chē)流量與接待能力指數(shù)的數(shù)據(jù)如表:
時(shí)間 | 周一 | 周二 | 周三 | 周四 | 周五 | 周六 | 周日 |
車(chē)流量(x千輛) | 10 | 9 | 9.5 | 10.5 | 11 | 8 | 8.5 |
接待能力指數(shù)y | 78 | 76 | 77 | 79 | 80 | 73 | 75 |
(I)根據(jù)表中周一到周五的數(shù)據(jù),求y關(guān)于x的線(xiàn)性回歸方程.
(Ⅱ)若由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2,則認(rèn)為該線(xiàn)性回歸方程是可靠的.請(qǐng)根據(jù)周六和周日數(shù)據(jù),判定所得的線(xiàn)性回歸方程是否可靠?
附參考公式及參考數(shù)據(jù):線(xiàn)性回歸方程,其中;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P—ABCD中,四邊形ABCD是矩形,平面PCD⊥平面ABCD,M為PC中點(diǎn).求證:
(1)PA∥平面MDB;
(2)PD⊥BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b為常數(shù),a0,函數(shù).
(1)若a=2,b=1,求在(0,+∞)內(nèi)的極值;
(2)①若a>0,b>0,求證:在區(qū)間[1,2]上是增函數(shù);
②若,,且在區(qū)間[1,2]上是增函數(shù),求由所有點(diǎn)形成的平面區(qū)域的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】央視傳媒為了解央視舉辦的“朗讀者”節(jié)目的收視時(shí)間情況,隨機(jī)抽取了某市名觀眾進(jìn)行調(diào)查,其中有名男觀眾和名女觀眾,將這名觀眾收視時(shí)間編成如圖所示的莖葉圖(單位:分鐘),收視時(shí)間在分鐘以上(包括分鐘)的稱(chēng)為“朗讀愛(ài)好者”,收視時(shí)間在分鐘以下(不包括分鐘)的稱(chēng)為“非朗讀愛(ài)好者”.
(1)若采用分層抽樣的方法從“朗讀愛(ài)好者”和“非朗讀愛(ài)好者”中隨機(jī)抽取名,再?gòu)倪@名觀眾中任選名,求至少選到名“朗讀愛(ài)好者”的概率;
(2)若從收視時(shí)間在40分鐘以上(包括40分鐘)的所有觀眾中選出男、女觀眾各1名,求選出的這兩名觀眾時(shí)間相差5分鐘以上的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某中學(xué)甲、乙兩班各隨機(jī)抽取 名同學(xué),測(cè)量他們的身高(單位: ),所得數(shù)據(jù)用莖葉圖表示如下,由此可估計(jì)甲、乙兩班同學(xué)的身高情況,則下列結(jié)論正確的是( )
A. 甲班同學(xué)身高的方差較大 B. 甲班同學(xué)身高的平均值較大
C. 甲班同學(xué)身高的中位數(shù)較大 D. 甲班同學(xué)身高在 以上的人數(shù)較多
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四個(gè)正方體中,是正方體的一條體對(duì)角線(xiàn),點(diǎn)分別為其所在棱的中點(diǎn),能得出平面的圖形為( )
A.B.
C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com