【題目】已知a,b為常數(shù),a0,函數(shù)

1)若a=2,b=1,求在(0,+∞)內(nèi)的極值;

2a>0b>0,求證:在區(qū)間[1,2]上是增函數(shù);

,且在區(qū)間[12]上是增函數(shù),求由所有點形成的平面區(qū)域的面積.

【答案】1,(2詳見解析,

【解析】

試題分析:(1)求具體函數(shù)極值問題分三步,一是求導(dǎo),二是求根,三是列表,關(guān)鍵在于正確求出導(dǎo)數(shù),即;求根時需結(jié)合定義區(qū)間進(jìn)行取舍,如根據(jù)定義區(qū)間舍去負(fù)根;列表時需注意導(dǎo)數(shù)在對應(yīng)區(qū)間的符號變化規(guī)律,這樣才可得出正確結(jié)論,因為導(dǎo)數(shù)為零的點不一定為極值點,極值點附近導(dǎo)數(shù)值必須要變號,(2利用導(dǎo)數(shù)證明函數(shù)單調(diào)性,首先要正確轉(zhuǎn)化,如本題只需證到在區(qū)間[12]成立即可,由得只需證到在區(qū)間[1,2],因為對稱軸在區(qū)間[1,2]上單調(diào)增,因此只需證,而這顯然成立,中條件在區(qū)間[1,2]上是增函數(shù)不同,它是要求在區(qū)間[1,2]上恒成立,結(jié)合二次函數(shù)圖像可得關(guān)于不等關(guān)系,再考慮,,可得可行域.

試題解析:(1)解:2

當(dāng),,

(舍去) 4

當(dāng),是減函數(shù),

當(dāng),是增函數(shù)

所以當(dāng),取得極小值為6

2)令

證明:二次函數(shù)的圖象開口向上,

對稱軸8

對一切恒成立.

對一切恒成立.

函數(shù)圖象是不間斷的,

在區(qū)間上是增函數(shù). 10

:

在區(qū)間上是增函數(shù)

恒成立.

恒成立.

12

(*)(**)的條件下,

恒成立.

綜上,滿足的線性約束條件是14

由所有點形成的平面區(qū)域為(如圖所示),

其中

的面積為. 16

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的半徑為3,圓心在軸正半軸上,直線與圓相切.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)過點的直線與圓交于不同的兩點,而且滿足,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐SABCD的底面為正方形,SD⊥底面ABCD,則下列結(jié)論中,錯誤的是(   )

A.ACSB

B.BC∥平面SAD

C.SASC與平面SBD所成的角相等

D.異面直線ABSC所成的角和異面直線CDSA所成的角相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,網(wǎng)絡(luò)電商已經(jīng)悄然進(jìn)入了廣大市民的日常生活,并慢慢改變了人們的消費方式為了更好地服務(wù)民眾,某電商在其官方APP中設(shè)置了用戶評價反饋系統(tǒng),以了解用戶對商品狀況和優(yōu)惠活動的評價現(xiàn)從評價系統(tǒng)中隨機抽出200條較為詳細(xì)的評價信息進(jìn)行統(tǒng)計,商品狀況和優(yōu)惠活動評價的2×2列聯(lián)表如下:

對優(yōu)惠活動好評

對優(yōu)惠活動不滿意

合計

對商品狀況好評

100

20

120

對商品狀況不滿意

50

30

80

合計

150

50

200

I)能否在犯錯誤的概率不超過0.001的前提下認(rèn)為優(yōu)惠活動好評與商品狀況好評之間有關(guān)系?

(Ⅱ)為了回饋用戶,公司通過APP向用戶隨機派送每張面額為0元,1元,2元的三種優(yōu)惠券用戶每次使用APP購物后,都可獲得一張優(yōu)惠券,且購物一次獲得1元優(yōu)惠券,2元優(yōu)惠券的概率分別是,,各次獲取優(yōu)惠券的結(jié)果相互獨立若某用戶一天使用了APP購物兩次,記該用戶當(dāng)天獲得的優(yōu)惠券面額之和為X,求隨機變量X的分布列和數(shù)學(xué)期望.

參考數(shù)據(jù)

PK2k

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:K2,其中na+b+c+d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地相距1000,貨車從甲地勻速行駛到乙地,速度不得超過80,已知貨車每小時的運輸成本(單位:元)由可變成本和固定成本組成,可變成本是速度平方的倍,固定成本為元.

)將全程運輸成本(元)表示為速度)的函數(shù),并指出這個函數(shù)的定義域;

)為了使全程運輸成本最小,貨車應(yīng)以多大的速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公園欲將一塊空地規(guī)劃成如圖所示的區(qū)域,其中在邊長為20米的正方形內(nèi)種植經(jīng)紅色郁金香,在正方形的剩余部分(即四個直角三角形內(nèi))種植黃色郁金香.現(xiàn)要在以為邊長的矩形內(nèi)種植綠色草坪,要求綠色草坪的面積等于黃色郁金香的面積.設(shè),米.

1)求之間的函數(shù)關(guān)系式;

2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體已知EF,G,H分別是A1D1,B1C1,D1DC1C的中點

(1)求證:EF∥平面ABHG;

(2)求證:平面ABHG⊥平面CFED

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從甲乙兩班各隨機抽取10名同學(xué),如圖所示的莖葉圖記錄了這20名同學(xué)在2018年高考語文作文題目中的成績(單位:分).已知語文作文題目滿分為60分,“分?jǐn)?shù)分,為及格:分?jǐn)?shù)分,為高分”,若甲乙兩班的成績的平均分都是44分.

(1)求,的值;

(2)若分別從甲乙兩班隨機各抽取1名成績?yōu)楦叻值膶W(xué)生,求抽到的學(xué)生中,甲班學(xué)生成績高于乙班學(xué)生成績的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)的圖象向右平移個單位,在向上平移一個單位,得到g(x)的圖象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],則x1﹣2x2的最大值為(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案