12.若集合A={x||2x-1|<3},$B=\left\{{\left.x\right|\frac{2x+1}{x-3}<0}\right\}$,則A∩∁RB=(  )
A.$\left\{{\left.x\right|-1<x<\frac{1}{2}或2<x<3}\right\}$B.$(-\frac{1}{2},2)$
C.$\left\{{\left.x\right|-1<x<-\frac{1}{2}}\right\}$D.$(-1,-\frac{1}{2}]$

分析 解不等式化簡(jiǎn)集合A、B,根據(jù)補(bǔ)集和交集的定義計(jì)算即可.

解答 解:集合A={x||2x-1|<3}={x|-3<2x-1<3}={x|-1<x<2},
$B=\left\{{\left.x\right|\frac{2x+1}{x-3}<0}\right\}$={x|(2x+1)(x-3)<0}={x|-$\frac{1}{2}$<x<3},
則∁RB={x|x≤-$\frac{1}{2}$或x≥3},
所以A∩∁RB={x|-1<x≤-$\frac{1}{2}$}=(-1,-$\frac{1}{2}$].
故選:D.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{e^x}{x+1}$.
(1)求f(x)在(1,f(1))處的切線方程;
(2)若關(guān)于x的不等式(x+1)f(x)≥$\frac{1}{2}{x^2}$+x+a在[0,+∞)上恒成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)函數(shù)g(x)=$\frac{(x-1)(x+m)}{lnx}$,其定義域是D,若關(guān)于x的不等式(x+1)f(x)<g(x)在D上有解,求整數(shù)m的最小值.(參考數(shù)據(jù):$\sqrt{e}$=1.65,ln2=0.69)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.從射擊、乒乓球、跳水、田徑四個(gè)大項(xiàng)的北京奧運(yùn)冠軍中選出10名作“奪冠之路”的勵(lì)志報(bào)告.若每個(gè)大項(xiàng)中至少選派兩人,則名額分配有幾種情況?( 。
A.10種B.15種C.20種D.25種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)$y=lg[{{x^2}+({k-3})x+\frac{9}{4}}]$的值域?yàn)镽,則實(shí)數(shù)k的取值范圍是(  )
A.(0,6)B.[0,6)C.(-∞,0]∪[6,+∞)D.(-∞,0)∪(6,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)f(x)是(-∞,+∞)上的偶函數(shù),若對(duì)于x≥0,都有f(x+2)=-f(x),且當(dāng)x∈[0,2)時(shí),f(x)=log2(x+1),則f(-2 015)+f(2 016)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(1)判斷函數(shù)f(x)=-x2+4x-2在區(qū)間[0,3]的單調(diào)性以及最大值和最小值;
(2)已知函數(shù)f(x)=$\frac{x}{x-1}$.
①求f(1+x)+f(1-x)的值;
②證明函數(shù)f(x)在(1,+∞)上是減函數(shù)(差分法).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知拋物線M:y2=4x,圓N:(x-1)2+y2=r2(其中r為常數(shù),且r>0),過(guò)點(diǎn)(1,0)的直線l交圓N于C、D兩點(diǎn),交拋物線M于A、B兩點(diǎn),若使|AC|=|BD|成立的直線有3條,則r的取值范圍是( 。
A.(0,1)B.(1,2)C.(2,+∞)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)$f(x)=\frac{sinπx}{{({x^2}+1)({x^2}-2x+2)}}$,x∈R.
(Ⅰ)請(qǐng)判斷方程f(x)=0在區(qū)間[-2017,2017]上的根的個(gè)數(shù),并說(shuō)明理由;
(Ⅱ)判斷f(x)的圖象是否具有對(duì)稱軸,如果有請(qǐng)寫出一個(gè)對(duì)稱軸方程,若不具有對(duì)稱性,請(qǐng)說(shuō)明理由;
(Ⅲ)求證:$\sum_{i=2}^n{\frac{{f(\frac{2i-1}{2})}}{{sin\frac{2i-1}{2}π}}}<\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)關(guān)于x的方程2x2-ax-2=0的兩根分別為α、β(α<β),函數(shù)$f(x)=\frac{4x-a}{{{x^2}+1}}$
(1)證明f(x)在區(qū)間(α,β)上是增函數(shù);
(2)當(dāng)a為何值時(shí),f(x)在區(qū)間[α,β]上的最大值與最小值之差最。

查看答案和解析>>

同步練習(xí)冊(cè)答案