選修4—1:(本小題滿分10分)幾何證明選講
如圖,在△ABC中,∠C為鈍角,點E,
H分別是邊AB上的點,點K和M分別
是邊AC和BC上的點,且AH=AC,EB
=BC,AE=AK,BH=BM.   
(Ⅰ)求證:E、H、M、K四點共圓;
(Ⅱ)若KE=EH,CE=3,求線段KM的  
長.

證明:⑴連接,
,
四邊形為等腰梯形,
注意到等腰梯形的對角互補,
四點共圓,----------- 3分
同理四點共圓,
均在點所確定的圓上,證畢.--------------- 5分
⑵連結(jié)
由⑴得五點共圓,----------- 7分
 為等腰梯形,,

可得,

為所求.  -------------------10分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分10分)
如下圖,AB、CD是圓的兩條平行弦,BE//ACBECDE、交圓于F,過A點的切線交DC的延長線于PPC=ED=1,PA=2.

(I)求AC的長;
(II)求證:BEEF

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知,如圖,AB是⊙O的直徑,G為AB延長線上的一點,GCD是⊙O的割線,過點G作AB的垂線,交直線AC于點E,交AD于點F,過G作⊙O的切線,切點為H.

求證:(1)C,D,F(xiàn),E四點共圓;
(2)GH2=GE·GF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是⊙的直徑,、是⊙上的點,的角平分線,過點點作,交的延長線于點,,垂足為點,

⑴求證:是⊙的切線    
⑵求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
如圖甲,在平面四邊形ABCD中,已知,,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD平面BDC(如圖乙),設(shè)點E、F分別為棱AC、AD的中點.

(1)求證:DC平面ABC;
(2)求BF與平面ABC所成角的正弦;
(3)求二面角B-EF-A的余弦

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點D作AC的平行線DE,交BA的延長線于點E。
求證:(1);
(2)DEDC=AEBD。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

直線的參數(shù)方程為 (t為參數(shù)),則直線的傾斜角為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

將參數(shù)方程化為普通方程為( )

A. B.
C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


(本小題滿分10分)

圓的兩條弦AB、CD交于點F,從F點引BC的平行線和直線
DA的延長線交于點P,再從點P引這個圓的切線,切點是Q
求證:PF=PQ.

查看答案和解析>>

同步練習(xí)冊答案