18.已知線性回歸直線方程是$\stackrel{∧}{y}$=1.23x+0.08,求m的值.
x23456
y2.23.8m6.57.0

分析 由表中數(shù)據(jù)求出$\overline{x}$、$\overline{y}$,代人線性回歸直線方程,即可求出m的值.

解答 解:由表中數(shù)據(jù)得,$\overline{x}$=$\frac{1}{5}$×(2+3+4+5+6)=4,
$\overline{y}$=$\frac{1}{5}$×(2.2+3.8+m+6.5+7.0)=3.9+$\frac{m}{5}$,
由線性回歸直線方程是$\stackrel{∧}{y}$=1.23x+0.08,
∴3.9+$\frac{m}{5}$=1.23×4+0.08,
解得m=5.5.

點評 本題考查了回歸直線方程的應(yīng)用問題,利用回歸直線方程恒過樣本中心點是解題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

8.設(shè)等差數(shù)列{an}的前n項和為Sn,若S9=2,則a2+a10+a11-a13=( 。
A.$\frac{2}{9}$B.$\frac{4}{9}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個焦點F恰好與拋物線y2=8x的焦點F重合,且兩曲線的一個交點為P,若|PF|=5,則雙曲線的方程為( 。
A.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{12}$=1B.$\frac{{x}^{2}}{36}$-$\frac{{y}^{2}}{32}$=1C.$\frac{{x}^{2}}{3}$-y2=1D.x2-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.某程序框圖如圖所示,若輸出S=2$\sqrt{2}$-1,則判斷框中x,y為( 。
A.k<7?B.k≥7?C.k≤8?D.k>8?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知指數(shù)函數(shù)y=f(x)的圖象過點P(3,27),則在(0,10]內(nèi)任取一個實數(shù)x,使得f(x)>81的概率為( 。
A.$\frac{3}{10}$B.$\frac{7}{10}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.同時拋擲2枚均勻硬幣100次,記兩枚硬幣都出現(xiàn)正面的次數(shù)為η,求Eη.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.二手車經(jīng)銷商小王對其所經(jīng)營的某一型號二手汽車的使用年數(shù)x(0<x≤10)與銷售價格y(單位:萬元/輛)進行整理,得到如表的對應(yīng)數(shù)據(jù):
使用年數(shù) 2 4 6 8 10
 售價 16 13 9.5 74.5
(Ⅰ)試求y關(guān)于x的回歸直線方程;(參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}^{2}}_{i}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)
(Ⅱ)已知每輛該型號汽車的收購價格為w=0.05x2-1.75x+17.2萬元,根據(jù)(Ⅰ)中所求的回歸方程,預(yù)測x為何值時,小王銷售一輛該型號汽車所獲得的利潤z最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知α-β=$\frac{π}{4}$,則(1+tanα)(1-tanβ)=( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知(1-2x)2016=a0+a1x+a2x2+…+a2016x2016.求:
(1)a0+a1+a2+…+a2016的值;
(2)a0+a2+a4+…++a2014+a2016的值.

查看答案和解析>>

同步練習冊答案