19.(B類題)如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=$\sqrt{3}$AB,則下列結(jié)論正確的是(  )
A.PB⊥ADB.平面PAB⊥平面PBC
C.直線BC∥平面PAED.△PFB為等邊三角形

分析 利用題中條件,逐一分析答案,通過排除和篩選,得到正確答案.

解答 解:∵AD與PB在平面的射影AB不垂直,
∴A不成立,
又平面PAB⊥平面PAE,
∴平面PAB⊥平面PBC也不成立;BC∥AD∥平面PAD,
∴直線BC∥平面PAE也不成立.
∵PA=$\sqrt{3}$AB,PA⊥平面ABC
∴PF=PB,BF=$\sqrt{3}$AB
∴△PFB為等邊三角形,
故選:D.

點(diǎn)評 本題考查直線與平面成的角、直線與平面垂直的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|,AC=1,BC=$\sqrt{3}$,M是邊BC上靠近C的一個(gè)四等分點(diǎn),若N是BC邊上的動(dòng)點(diǎn),則$\overrightarrow{AM}$•$\overrightarrow{AN}$的取值范圍是[$\frac{1}{2}$,$\frac{3}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)直線y=kx與橢圓$\frac{x^2}{2}+{y^2}=1$相交于A,B兩點(diǎn),分別過A,B向x軸作垂線,若垂足恰為橢圓的兩個(gè)焦點(diǎn),則k=( 。
A.±1B.$±\frac{{\sqrt{2}}}{2}$C.$±\frac{1}{2}$D.$±\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示,AE,DF是圓柱的兩條母線,過AD作圓柱的截面交下底面于BC,且AD=BC,圓柱的高為2,底面半徑為$\sqrt{3}$
(Ⅰ)求證:平面AEB∥平面DFC
(Ⅱ)求證:BC⊥AB
(Ⅲ)求四棱錐E-ABCD體積最大時(shí)AD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖所示,正方形ABCD所在平面與圓O所在平面相交于CD,線段CD為圓O的弦,AE垂直于圓O所在平面,垂足E是圓O上異于C,D的點(diǎn),AE=3,圓O的直徑為9.
(Ⅰ)求證:平面ABCD⊥平面ADE; 
(Ⅱ)求三棱錐D-ABE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)F(x)=($\frac{lnx}{x}$)2+(a-1)$\frac{lnx}{x}$+1-a有三個(gè)不同的零點(diǎn)x1,x2,x3(其中x1<x2<x3),則(1-$\frac{ln{x}_{1}}{{x}_{1}}$)2(1-$\frac{ln{x}_{2}}{{x}_{2}}$)(1-$\frac{ln{x}_{3}}{{x}_{3}}$)的值為( 。
A.1-aB.a-1C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若不等式x2+ax+1≥0對于一切x∈(0,$\frac{1}{2}$)恒成立,則a的取值范圍是(  )
A.a≥0B.a≥-2C.a≥-$\frac{5}{2}$D.a≥-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知A={x|-x2+3x-2>0},B={x|x2-(a+1)x-a≤0}.
(1)化簡集合B;
(2)若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若{bn}滿足約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,則z=x+2y的最小值為(  )
A.3B.4C.7D.2

查看答案和解析>>

同步練習(xí)冊答案