【題目】某省普通高中學業(yè)水平考試成績按人數(shù)所占比例依次由高到低分為,,,,五個等級,等級等級,等級,,等級共.其中等級為不合格,原則上比例不超過.該省某校高二年級學生都參加學業(yè)水平考試,先從中隨機抽取了部分學生的考試成績進行統(tǒng)計,統(tǒng)計結(jié)果如圖所示.若該校高二年級共有1000名學生,則估計該年級拿到級及以上級別的學生人數(shù)有(

A.45B.660C.880D.900

【答案】D

【解析】

根據(jù)等級的人數(shù)和占比,可計算出樣本容量.再根據(jù)扇形圖可計算出、等級一共的人數(shù),即可估計該年級拿到級及以上級別的學生人數(shù).

由條形圖和扇形統(tǒng)計圖可知,在抽取的部分學生中等級共有,占樣本容量的

所以樣本容量為

則樣本中等級人數(shù)為

由條形圖可知樣本中等級人數(shù)為

所以在樣本中級及以上級別的學生人數(shù)為

則該年級拿到級及以上級別的學生人數(shù)為

故選:D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某工程隊共有500人,要建造一段6000米的高速公路,工程需要把500人分成兩組,甲組的任務(wù)是完成一段4000米的軟土地帶,乙組的任務(wù)是完成剩下的2000米的硬土地帶,據(jù)測算,軟、硬土地每米的工程量是30工(工為計量單位)和40.

1)若平均分配兩組的人數(shù),分別計算兩組完工的時間,并求出此時全隊的筑路工期;

2)如何分配兩組的人數(shù)會使得全隊的筑路工期最短?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某次高三年級模擬考試中,數(shù)學試卷有一道滿分10分的選做題,學生可以從AB兩道題目中任選一題作答.某校有900名高三學生參加了本次考試,為了了解該校學生解答該選做題的得分情況,作為下一步教學的參考依據(jù),計劃從900名考生的選做題成績中隨機抽取一個容量為10的樣本,為此將900名考生選做題的成績按照隨機順序依次編號為001~900.

1)若采用系統(tǒng)抽樣法抽樣,從編號為001~090的成績中用簡單隨機抽樣確定的成績編號為025,求樣本中所有成績編號之和;

2)若采用分層抽樣,按照學生選擇A題目或B題目,將成績分為兩層.已知該校高三學生有540人選做A題目,有360人選做B題目,選取的樣本中,A題目的成績平均數(shù)為5,方差為2,B題目的成績平均數(shù)為5.5,方差為0.25.

i)用樣本估計該校這900名考生選做題得分的平均數(shù)與方差;

ii)本選做題閱卷分值都為整數(shù),且選取的樣本中,A題目成績的中位數(shù)和B題目成績的中位數(shù)都是5.5.從樣本中隨機選取兩個大于樣本平均值的數(shù)據(jù)做進一步調(diào)查,求取到的兩個成績來自不同題目的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,點是曲線上的動點,點的延長線上,且,點的軌跡為

(1)求直線及曲線的極坐標方程;

(2)若射線與直線交于點,與曲線交于點(與原點不重合),求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列,,的前n項和為

1)若,,求證:,其中,

2)若對任意均有,求的通項公式;

3)若對任意均有,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某醫(yī)院為篩查某種疾病,需要檢驗血液是否為陽性,現(xiàn)有份血液樣本,有以下兩種檢驗方式:①逐份檢驗,列需要檢驗次;②混合檢驗,將其)份血液樣本分別取樣混合在一起檢驗.若檢驗結(jié)果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗一次就夠了,如果檢驗結(jié)果為陽性,為了明確這份血液究竟哪幾份為陽性,就要對這份再逐份檢驗,此時這份血液的檢驗次數(shù)總共為.假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨立的,且每份樣本是陽性結(jié)果的概率為.

1)假設(shè)有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗的方式,求恰好經(jīng)過3次檢驗就能把陽性樣本全部檢驗出來的概率.

2)現(xiàn)取其中)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.

(i)運用概率統(tǒng)計的知識,若,試求關(guān)于的函數(shù)關(guān)系式;

(ii)若,且采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)期望值更少,求的最大值.

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年某開發(fā)區(qū)一家汽車生產(chǎn)企業(yè)計劃引進一批新能源汽車制造設(shè)備,通過市場分析,全年需投入固定成本3000萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且,由市場調(diào)研知,每輛車售價6萬元,且全年內(nèi)生產(chǎn)的車輛當年能全部銷售完.

1)求出2019年的利潤(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤=銷售額成本)

22019年產(chǎn)量為多少(百輛)時,企業(yè)所獲利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,

有零點, m 的取值范圍;

確定 m 的取值范圍,使得有兩個相異實根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù),當時,恒成立,則的最大值是_____.

查看答案和解析>>

同步練習冊答案