【題目】某地區(qū)2008年至2016年糧食產(chǎn)量的部分數(shù)據(jù)如下表:
(1)求該地區(qū)2008年至2016年的糧食年產(chǎn)量與年份之間的線性回歸方程;
(2)利用(1)中的回歸方程,分析2008年至2016年該地區(qū)糧食產(chǎn)量的變化情況,并預測該地區(qū) 2018年的糧食產(chǎn)量.
附:回歸直線的斜率和截距的最小二乘估計公式分別為,.
【答案】(1);(2)測該地區(qū)2018 量為299. 2萬噸.
【解析】試題分析:(1)計算和,利用的計算公式即可得解;
(2)由的意義得該地區(qū)糧食產(chǎn)量逐年增加,平均每兩年增加6. 5 萬噸,將代入中的線性回歸方程得預測值.
試題解析:
(1)由所給數(shù)據(jù)可以看出,糧食年產(chǎn)量與年份之間是近似直線上升,下面來求線性回歸方程,為此對數(shù)據(jù)預處理如下:
對預處理后的數(shù)據(jù),容易算得
,
∴,
.
由上述計算結(jié)果,知所求線性回歸方程為,
即.
(2)由(1)知,,故2008年至2016年該地區(qū)糧食產(chǎn)量逐年增加,平均每兩年增加6. 5 萬噸.
將代入(1)中的線性回歸方程,得,故預測該地區(qū)2018 量為299. 2萬噸.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分圖象如圖所示, (Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著人們對環(huán)境關注度的提高,綠色低碳出行越來越受到市民重視. 為此貴陽市建立了公共自行車服務系統(tǒng),市民憑本人二代身份證到自行車服務中心辦理誠信借車卡借車,初次辦卡時卡內(nèi)預先贈送20積分,當積分為0時,借車卡將自動鎖定,限制借車,用戶應持卡到公共自行車服務中心以1元購1個積分的形式再次激活該卡,為了鼓勵市民租用公共自行車出行,同時督促市民盡快還車,方便更多的市民使用,公共自行車按每車每次的租用時間進行扣分收費,具體扣分標準如下:
①租用時間不超過1小時,免費;
②租用時間為1小時以上且不超過2小時,扣1分;
③租用時間為2小時以上且不超過3小時,扣2分;
④租用時間超過3小時,按每小時扣2分收費(不足1小時的部分按1小時計算).
甲、乙兩人獨立出行,各租用公共自行車一次,兩人租車時間都不會超過3小時,設甲、乙租用時間不超過1小時的概率分別是0.4和0.5;租用時間為1小時以上且不超過2小時的概率分別是0.4和0.3.
(1)求甲、乙兩人所扣積分相同的概率;
(2)設甲、乙兩人所扣積分之和為隨機變量,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x-a|.
(1)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實數(shù)a的值;
(2)在(1)的條件下,若f(x)+f(x+5)≥m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,矩形ABCD的邊AB=m,BC=4,PA⊥平面ABCD,PA=3,現(xiàn)有數(shù)據(jù):
① ;②m=3;③m=4;④ .若在BC邊上存在點Q(Q不在端點B、C處),使PQ⊥QD,則m可以。 )
A.①②
B.①②③
C.②④
D.①
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4 坐標系與參數(shù)方程
已知函數(shù),曲線在點處的切線為,若時,有極值.
(1)求的值;
(2)求在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(1)試說明的圖象由函數(shù)的圖象經(jīng)過怎樣的變化得到?并求的單調(diào)區(qū)間;
(2)若函數(shù)與的圖象關于直線對稱,當時,求函數(shù)的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設進入某商場的每一位顧客購買甲種商品的概率為0.5,購買乙種商品的概率為0.6,且購買甲種商品與購買乙種商品相互獨立,各顧客之間購買商品也是相互獨立的.
(1)求進入商場的1位顧客購買甲、乙兩種商品中的一種的概率;
(2)求進入商場的1位顧客至少購買甲、乙兩種商品中的一種的概率;
(3)記ξ表示進入商場的3位顧客中至少購買甲、乙兩種商品中的一種的人數(shù),求ξ的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x)是定義域為R的偶函數(shù),當x≥0時,f(x)= ,若關于x的方程[f(x)]2+af(x)﹣a﹣1=0(a∈R)有且只有7個不同實數(shù)根,則a的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com