【題目】(1)設.
①求;
②求;
③求;
(2)求除以9的余數(shù).
【答案】(1)16,256,15;(2)7
【解析】試題分析:(1)利用賦值法,令,求;(2)令x=-1,與(2)相加求;,;
③令,結(jié)合二項式系數(shù)和即可求出結(jié)果;
(2)利用二項式系數(shù)和,把 分解為9的倍數(shù)形式,再求對應的余數(shù).
試題解析:(1)①令x=1,得a0+a1+a2+a3+a4=(3-1)4=16.
②令x=-1得,a0-a1+a2-a3+a4=(-3-1)4=256,
而由(1)知a0+a1+a2+a3+a4=(3-1)4=16,兩式相加,得a0+a2+a4=136.
③令x=0得a0=(0-1)4=1,得a1+a2+a3+a4=a0+a1+a2+a3+a4-a0=16-1=15.
(2)解 S=C+C+…+C=227-1
=89-1=(9-1)9-1=C×99-C×98+…+C×9-C-1
=9(C×98-C×97+…+C)-2
=9(C×98-C×97+…+C-1)+7,
顯然上式括號內(nèi)的數(shù)是正整數(shù).
故S被9除的余數(shù)為7.
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中_________為真命題.
①“A∩B=A”成立的必要條件是“AB”; w ②“若x2+y2=0,則x,y全為0”的否命題;
③“全等三角形是相似三角形”的逆命題; ④“圓內(nèi)接四邊形對角互補”的逆否命題.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】汽車租賃公司為了調(diào)查A,B兩種車型的出租情況,現(xiàn)隨機抽取了這兩種車型各100輛汽車,分別統(tǒng)計了每輛車某個星期內(nèi)的出租天數(shù),統(tǒng)計數(shù)據(jù)如下表:
A型車
出租天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
車輛數(shù) | 5 | 10 | 30 | 35 | 15 | 3 | 2 |
B型車
出租天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
車輛數(shù) | 14 | 20 | 20 | 16 | 15 | 10 | 5 |
(1)從出租天數(shù)為3天的汽車(僅限A,B兩種車型)中隨機抽取一輛,估計這輛汽車恰好是A型車的概率;
(2)根據(jù)這個星期的統(tǒng)計數(shù)據(jù),估計該公司一輛A型車,一輛B型車一周內(nèi)合計出租天數(shù)恰好為4天的概率;
(3)如果兩種車型每輛車每天出租獲得的利潤相同,該公司需要從A,B兩種車型中購買一輛,請你根據(jù)所學的統(tǒng)計知識,給出建議應該購買哪一種車型,并說明你的理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求f(x)的定義域和值域;
(2)判斷f(x)的奇偶性與單調(diào)性;
(3)解關于x的不等式f(x2﹣2x+2)+f(﹣5)<0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的方程為,雙曲線的一條漸近線與軸所成的夾角為,且雙曲線的焦距為.
(1)求橢圓的方程;
(2)設分別為橢圓的左,右焦點,過作直線 (與軸不重合)交橢圓于, 兩點,線段的中點為,記直線的斜率為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面上,點A、C為射線PM上的兩點,點B、D為射線PN上的兩點,則有 (其中S△PAB、S△PCD分別為△PAB、△PCD的面積);空間中,點A、C為射線PM上的兩點,點B、D為射線PN上的兩點,點E、F為射線PL上的兩點,則有 =(其中VP﹣ABE、VP﹣CDF分別為四面體P﹣ABE、P﹣CDF的體積).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com