A. | $\sqrt{14}$ | B. | $\sqrt{15}$ | C. | 4 | D. | $\sqrt{17}$ |
分析 求出圓的圓心坐標和半徑,圓心到直線的距離,利用勾股定理求出半弦長,則弦長可求.
解答 解:圓$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ∈R)的圓心為(0,0),半徑為2,
圓心到直線的距離d=$\frac{1}{\sqrt{2}}$,
∴直線x-y=1截圓$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ∈R)所得弦長為2$\sqrt{4-\frac{1}{2}}$=$\sqrt{14}$.
故選A.
點評 本題考查圓的參數(shù)方程,考查了點到直線的距離公式,是基礎(chǔ)的計算題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)在($\frac{1}{2}$,+∞)內(nèi)是增函數(shù) | B. | f(x)在($\frac{1}{2}$,+∞)內(nèi)是減函數(shù) | ||
C. | f(x)在(-∞,$\frac{1}{2}$)內(nèi)是增函數(shù) | D. | f(x)在(-∞,$\frac{1}{2}$)內(nèi)是減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1) | B. | (1,+∞) | C. | (1,4] | D. | (1,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | 3 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com