【題目】如圖,三棱柱中, , , 分別為棱的中點(diǎn).

(1)在平面內(nèi)過(guò)點(diǎn)平面于點(diǎn),并寫出作圖步驟,但不要求證明.

(2)若側(cè)面側(cè)面,求直線與平面所成角的正弦值.

【答案】(1)見(jiàn)解析(2)

【解析】試題分析:(1)證線面平行則需在面內(nèi)找一線與之平行即可平面內(nèi),過(guò)點(diǎn)于點(diǎn),連結(jié),在中,作于點(diǎn),連結(jié)并延長(zhǎng)交于點(diǎn),則為所求作直線.(2)根據(jù)圖形分別以的方向?yàn)?/span>軸, 軸, 軸的正方向,然后寫出的坐標(biāo),求出面得法向量m,根據(jù)即可求得結(jié)果.

試題解析:

(1)如圖,在平面內(nèi),過(guò)點(diǎn)于點(diǎn),連結(jié),在中,作于點(diǎn),連結(jié)并延長(zhǎng)交于點(diǎn),則為所求作直線.

(2)連結(jié),∵,∴為正三角形.

的中點(diǎn),∴

又∵側(cè)面側(cè)面,且面

平面,∴平面,

在平面內(nèi)過(guò)點(diǎn)于點(diǎn),

分別以的方向?yàn)?/span>軸, 軸, 軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則 .

的中點(diǎn),∴點(diǎn)的坐標(biāo)為,

.

,∴,∴

設(shè)平面的法向量為

,

,得,所以平面的一個(gè)法向量為.

設(shè)直線與平面所成角為,

即直線與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=mx2﹣mx﹣1.
(1)若對(duì)于x∈R,f(x)<0恒成立,求實(shí)數(shù)m的取值范圍;
(2)若對(duì)于x∈[1,3],f(x)<5﹣m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線為參數(shù)),為參數(shù)).

(1)化的參數(shù)方程為普通方程,并說(shuō)明它們分別表示什么曲線;

(2)若上的點(diǎn)對(duì)應(yīng)的參數(shù)為上的動(dòng)點(diǎn),求的中點(diǎn)到直線為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn= ,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn= +(﹣1)nan , 求數(shù)列{bn}的前2n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校大一新生中的6名同學(xué)打算參加學(xué)校組織的“演講團(tuán)”、“吉他協(xié)會(huì)”等五個(gè)社團(tuán),若每名同學(xué)必須參加且只能參加1個(gè)社團(tuán)且每個(gè)社團(tuán)至多兩人參加,則這6個(gè)人中沒(méi)有人參加“演講團(tuán)”的不同參加方法數(shù)為( )

A. 3600 B. 1080 C. 1440 D. 2520

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)擬對(duì)某商品進(jìn)行促銷,現(xiàn)有兩種方案供選擇,每種促銷方案都需分兩個(gè)月實(shí)施,且每種方案中第一個(gè)月與第二個(gè)月的銷售相互獨(dú)立.根據(jù)以往促銷的統(tǒng)計(jì)數(shù)據(jù),若實(shí)施方案1,預(yù)計(jì)第一個(gè)月的銷量是促銷前的1.2倍和1.5倍的概率分別是0.6和0.4,第二個(gè)月的銷量是第一個(gè)月的1.4倍和1.6倍的概率都是0.5;若實(shí)施方案2,預(yù)計(jì)第一個(gè)月的銷量是促銷前的1.4倍和1.5倍的概率分別是0.7和0.3,第二個(gè)月的銷量是第一個(gè)月的1.2倍和1.6倍的概率分別是0.6和0.4.令表示實(shí)施方案的第二個(gè)月的銷量是促銷前銷量的倍數(shù).

(Ⅰ)求 的分布列;

(Ⅱ)不管實(shí)施哪種方案, 與第二個(gè)月的利潤(rùn)之間的關(guān)系如下表,試比較哪種方案第二個(gè)月的利潤(rùn)更大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)過(guò)點(diǎn)A(2,0),B(0,1)兩點(diǎn).
(1)求橢圓C的方程及離心率;
(2)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A,B.已知點(diǎn)A的坐標(biāo)為(﹣a,0),點(diǎn) Q(0,y0)在線段AB的垂直平分線上,且 =4,求y0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的幾何體中,四邊形AA1B1B是邊長(zhǎng)為3的正方形,CC1=2,CC1∥AA1 , 這個(gè)幾何體是棱柱嗎?若是,指出是幾棱柱.若不是棱柱,請(qǐng)你試用一個(gè)平面截去一部分,使剩余部分是一個(gè)棱長(zhǎng)為2的三棱柱,并指出截去的幾何體的特征,在立體圖中畫出截面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖⑴、⑵、⑶、⑷為四個(gè)幾何體的三視圖,根據(jù)三視圖可以判斷這四個(gè)幾何體依次分別為

A.三棱臺(tái)、三棱柱、圓錐、圓臺(tái)
B.三棱臺(tái)、三棱錐、圓錐、圓臺(tái)
C.三棱柱、正四棱錐、圓錐、圓臺(tái)
D.三棱柱、三棱臺(tái)、圓錐、圓臺(tái)

查看答案和解析>>

同步練習(xí)冊(cè)答案