已知函數(shù)f(x)=+aln(x-1)(a∈R).
(Ⅰ)若f(x)在[2,+∞)上是增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)當a=2時,求證:1-<2ln(x-1)<2x-4(x>2);
(Ⅲ)求證:++…+<lnn<1++ +(n∈N*,且n≥2).
(Ⅰ);(Ⅱ)詳見解析;(Ⅲ)詳見解析.
解析試題分析:(Ⅰ) 利用導數(shù)分析單調性,把恒成立問題轉化為最值;(Ⅱ)利用導數(shù)分析函數(shù)的單調性可求;(Ⅲ)
利用放縮法和數(shù)列求和可證.
試題解析:(Ⅰ)由已知,得f(x)=-1++aln(x-1),
求導數(shù),得f ′(x)=-+.
∵f(x)在[2,+∞)上是增函數(shù),
∴f ′(x)≥0在[2,+∞)上恒成立,即a≥在[2,+∞)上恒成立,
∴a≥()max.
∵x≥2,∴0<≤1,∴a≥1.
故實數(shù)a的取值范圍為[1,+∞). 4分
(Ⅱ)當a=2時,由(Ⅰ)知,f(x)在[2,+∞)上是增函數(shù),
∴當x>2時,f(x)>f(2),即-1++2ln(x-1)>0,
∴2ln(x-1)>1-.
令g(x)=2x-4-2ln(x-1),則g′(x)=2-=.
∵x>2,∴g′(x)>0,
∴g(x)在(2,+∞)上是增函數(shù),
∴g(x)>g(2)=0,即2x-4-2ln(x-1)>0,
∴2x-4>2ln(x-1).
綜上可得,1-<2ln(x-1)<2x-4(x>2). 9分
(Ⅲ)由(Ⅱ),得1-<2ln(x-1)<2x-4(x>2),
令x-1=,則<2ln<2·,k=1,2, ,n-1.
將上述n-1個不等式依次相加,得
++ …+<2(ln+ln+…+ln)<2(1++…+),
∴++…+<2lnn<2(1++…+),
∴++…+<lnn<1++…+(n∈N*,且n≥2). 14分
考點:導數(shù),函數(shù)的單調性,數(shù)列求和.
科目:高中數(shù)學 來源: 題型:解答題
如圖,某自來水公司要在公路兩側排水管,公路為東西方向,在路北側沿直線排,在路南側沿直線排,現(xiàn)要在矩形區(qū)域內沿直線將與接通.已知,,公路兩側排管費用為每米1萬元,穿過公路的部分的排管費用為每米2萬元,設與所成的小于的角為.
(Ⅰ)求矩形區(qū)域內的排管費用關于的函數(shù)關系式;
(Ⅱ)求排管的最小費用及相應的角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=x-ax+(a-1),.
(1)討論函數(shù)的單調性;(2)若,設,
(。┣笞Cg(x)為單調遞增函數(shù);
(ⅱ)求證對任意x,x,xx,有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)已知函數(shù).
(Ⅰ)當時,求函數(shù)的單調增區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)與的圖像都過點,且它們在點處有公共切線.
(1)求函數(shù)和的表達式及在點處的公切線方程;
(2)設,其中,求的單調區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com