已知函數(shù)的圖像都過(guò)點(diǎn),且它們?cè)邳c(diǎn)處有公共切線.
(1)求函數(shù)的表達(dá)式及在點(diǎn)處的公切線方程;
(2)設(shè),其中,求的單調(diào)區(qū)間.

(1),;
(2)當(dāng)時(shí),F(xiàn)(x)的單調(diào)減區(qū)間是 單調(diào)增區(qū)間是;
當(dāng)時(shí),F(xiàn)(x)沒(méi)有單調(diào)減區(qū)間,單調(diào)增區(qū)間是.

解析試題分析:(1)因?yàn)楹瘮?shù)有公共的切線,所以切線的斜率相同,又因?yàn)樗鼈兌歼^(guò),所以可以列出方程,求出;(2)先求導(dǎo)數(shù),求出函數(shù)的定義域,通過(guò)討論的正負(fù),求導(dǎo)求單調(diào)區(qū)間.
試題解析:(1)∵過(guò)點(diǎn)
,                                        (2分)
,∴切線的斜率.
, (1)
又∵的圖像過(guò)點(diǎn) (2)
聯(lián)立(1)(2)解得:                                (4分)
;切線方程為,即
;切線為:      (6分)
(2)∵,
                            (9分)
①當(dāng)時(shí),, ∵,∴
,∴當(dāng)時(shí), ;
當(dāng)時(shí),.
的單調(diào)減區(qū)間是 單調(diào)增區(qū)間是;       (11分)
②當(dāng)時(shí),顯然沒(méi)有單調(diào)減區(qū)間,單調(diào)增區(qū)間是.    (13分)
考點(diǎn):1.利用導(dǎo)數(shù)求切線方程;2.利用導(dǎo)數(shù)求單調(diào)區(qū)間.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=+aln(x-1)(a∈R).
(Ⅰ)若f(x)在[2,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=2時(shí),求證:1-<2ln(x-1)<2x-4(x>2);
(Ⅲ)求證:+…+<lnn<1++ +(n∈N*,且n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)為常數(shù))
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若,證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),且處的切線方程為.
(1)求的解析式;
(2)證明:當(dāng)時(shí),恒有;
(3)證明:若,,且,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求函數(shù)在區(qū)間[1,3]上的極值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè), 已知函數(shù) 
(Ⅰ) 證明在區(qū)間(-1,1)內(nèi)單調(diào)遞減, 在區(qū)間(1, + ∞)內(nèi)單調(diào)遞增;
(Ⅱ) 設(shè)曲線在點(diǎn)處的切線相互平行, 且 證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)若在實(shí)數(shù)集R上單調(diào)遞增,求的范圍;
(Ⅱ)是否存在實(shí)數(shù)使上單調(diào)遞減.若存在求出的范圍,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)(e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)于任意,不等式恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知f(x)=1nx-a(x-l),a∈R
(I)討論f(x)的單調(diào)性;
(Ⅱ)若x≥1時(shí),石恒成立,求實(shí)數(shù)a的取值范圍,

查看答案和解析>>

同步練習(xí)冊(cè)答案