如圖,在直棱柱中,當?shù)酌嫠倪呅?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005715557526.png" style="vertical-align:middle;" />滿足      時,有成立.(填上你認為正確的一個條件即可)
(或菱形、正方形、箏形等)

試題分析:如果,而直棱柱中,,所以平面,所以填(或菱形、正方形、箏形等)均可.
點評:解決立體幾何問題,要充分發(fā)揮空間想象能力,依據(jù)相應的判定定理和性質(zhì)定理.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,底面,
,的中點.

(Ⅰ)求和平面所成的角的大小;
(Ⅱ)證明平面
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知四面體OABC中,OA、OB、OC兩兩相互垂直,,,D為四面體OABC外一點.給出下列命題:①不存在點D,使四面體ABCD有三個面是直角三角形;②不存在點D,使四面體ABCD是正三棱錐;③存在點D,使CD與AB垂直并相等;④存在無數(shù)個點D,使點O在四面體ABCD的外接球面上.則其中正確命題的序號是(  )
A.①②            B.②③            C.①③            D.③④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四邊形中,對角線,,的重心,過點的直線分別交,沿折起,沿折起,正好重合于.

(Ⅰ) 求證:平面平面;
(Ⅱ)求平面與平面夾角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2 DE=2,M為AD中點.

(Ⅰ) 證明
(Ⅱ) 若二面角A-BF-D的平面角的余弦值為,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,正方形與梯形所在的平面互相垂直,,,,點在線段上.

(I)當點中點時,求證:∥平面;
(II)當平面與平面所成銳二面角的余弦值為時,求三棱錐 的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)在如圖的多面體中,⊥平面,,,,,的中點.

(Ⅰ) 求證:平面;
(Ⅱ) 求證:
(Ⅲ) 求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè),是兩條不同的直線,,,是三個不同的平面.有下列四個命題:
①若,,,則;②若,則;
③ 若,,,則;④ 若,,則
其中錯誤命題的序號是(      )
A.①④B.①③C.②③④D.②③

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

、是不同的直線,、是不同的平面,有以下四命題:   
① 若,則;          ②若,則;
③ 若,則;         ④若,則.
其中真命題的序號是                     (   )
A.①③B.①④C.②③D.②④

查看答案和解析>>

同步練習冊答案