如圖,
,
,…,
,…是曲線
上的點,
,
,…,
,…是
軸正半軸上的點,且
,
,…,
,… 均為斜邊在
軸上的等腰直角三角形(
為坐標原點).
(1)寫出
、
和
之間的等量關系,以及
、
和
之間的等量關系;
(2)求證:
(
);
(3)設
,對所有
,
恒成立,求實數(shù)
的取值范圍.
第一問利用有
,
得到
第二問證明:①當
時,可求得
,命題成立;②假設當
時,命題成立,即有
則當
時,由歸納假設及
,
得
第三問
.………………………2分
因為函數(shù)
在區(qū)間
上單調(diào)遞增,所以當
時,
最大為
,即
解:(1)依題意,有
,
,………………4分
(2)證明:①當
時,可求得
,命題成立; ……………2分
②假設當
時,命題成立,即有
,……………………1分
則當
時,由歸納假設及
,
得
.
即
解得
(
不合題意,舍去)
即當
時,命題成立. …………………………………………4分
綜上所述,對所有
,
. ……………………………1分
(3)
.………………………2分
因為函數(shù)
在區(qū)間
上單調(diào)遞增,所以當
時,
最大為
,即
.……………2分
由題意,有
. 所以,
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:填空題
已知等差數(shù)列
的首項
及公差
都是整數(shù),前
項和為
,若
,設
的結(jié)果為
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列
是等差數(shù)列前
項和
,
.
(1)求數(shù)列
的通項公式;
(2)求數(shù)列
的前
項和
;
(3)求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本大題6分)已知等差數(shù)列
滿足:
;
(1).求
;(2).令
,求數(shù)列
的前n項積
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
觀察下列等式:
由此猜測第
個等式為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知函數(shù)
,項數(shù)為29的等差數(shù)列
滿足
,且公差
,若
,
時,
的值 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知等差數(shù)列{
}的前n項和為
,若
,則
= ( )
查看答案和解析>>