分析 (Ⅰ)由已知直接求出a2,a3的值,并由累加法求出{an}的通項(xiàng)公式;
(Ⅱ)把數(shù)列通項(xiàng)公式代入bn=$\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n+2}}$+$\frac{1}{{a}_{n+3}}$+…+$\frac{1}{{a}_{2n+1}}$,利用裂項(xiàng)相消法化簡(jiǎn),求出最大值,可得bn≤m恒成立時(shí)實(shí)數(shù)m的取值范圍.
解答 解:(Ⅰ)∵a1=2,an-an-1=2n,∴a2=6,a3=12.
當(dāng)n≥2時(shí),an-an-1=2n,an-1-an-2=2(n-1),…,a3-a2=2×3,a2-a1=2×2,
累加可得:an-a1=2[n+(n-1)+…+3+2],
∴${a}_{n}=2[n+(n-1)+…+2+1]=2×\frac{n(n+1)}{2}=n(n+1)$.
當(dāng)n=1時(shí),a1=2滿足上式,
∴an=n(n+1);
(Ⅱ)bn=$\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n+2}}$+$\frac{1}{{a}_{n+3}}$+…+$\frac{1}{{a}_{2n+1}}$
=$\frac{1}{(n+1)(n+2)}+\frac{1}{(n+2)(n+3)}+…+$$\frac{1}{(2n+1)(2n+2)}$
=$\frac{1}{n+1}-\frac{1}{n+2}+\frac{1}{n+2}-\frac{1}{n+3}+…+\frac{1}{2n+1}-\frac{1}{2n+2}$
=$\frac{1}{n+1}-\frac{1}{2n+2}=\frac{1}{2(n+1)}$.
即當(dāng)n=1時(shí),$(_{n})_{max}=\frac{1}{4}$.
∴若bn≤m恒成立,則實(shí)數(shù)m的取值范圍為[$\frac{1}{4},+∞$).
點(diǎn)評(píng) 本題考查數(shù)列遞推式,訓(xùn)練了累加法求數(shù)列的通項(xiàng)公式,考查裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [1,e+$\frac{1}{e}$] | B. | [1,e-$\frac{1}{e}$] | C. | [e-$\frac{1}{e}$,e+$\frac{1}{e}$] | D. | [e-$\frac{1}{e}$,e] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({0,\frac{1}{4}}]$ | B. | $({\frac{1}{4},\frac{1}{2}}]$ | C. | $[{\frac{1}{4},\frac{1}{2}})$ | D. | $({0,\frac{1}{2}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2-i}{5}$ | B. | $\frac{2+i}{5}$ | C. | $\frac{1-2i}{5}$ | D. | $\frac{1+2i}{5}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com