分析 (Ⅰ)曲線C2:ρ=4cosθ,即ρ2=4ρcosθ,把ρ2=x2+y2,x=ρcosθ代入可得C的直角坐標方程.
(Ⅱ)求出圓心到直線的距離d,利用|AB|>$\sqrt{7}$,求α的取值范圍.
解答 解:(Ⅰ)曲線C2:ρ=4cosθ,即ρ2=4ρcosθ,化為直角坐標方程:x2+y2=4x,配方為 C2:(x-2)2+y2=4,可得圓心(2,0),半徑r=2;
(Ⅱ)設曲線C1的方程為y=k(x+1),即kx-y+k=0,圓心到直線的距離d=$\frac{|3k|}{\sqrt{{k}^{2}+1}}$
∵曲線C1與C2交于A,B兩點,且|AB|>$\sqrt{7}$,
∴d=$\frac{|3k|}{\sqrt{{k}^{2}+1}}$>$\frac{3}{2}$,∴∴k<-$\frac{\sqrt{3}}{3}$或k>$\frac{\sqrt{3}}{3}$,
∴30°<α<120°.
點評 本題考查了極坐標方程化為直角坐標方程、點到直線的距離公式、直線與圓相交弦長公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,$\frac{1}{2}$) | B. | (-∞,0)∪[$\frac{1}{2}$,+∞) | C. | (0,$\frac{1}{2}$) | D. | (-∞,0]∪[$\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2+$\sqrt{3}$ | B. | 1+$\sqrt{2}$ | C. | 2+$\sqrt{2}$ | D. | 1+$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1,2} | B. | {1,2,3} | C. | {0,1,2} | D. | (0,1) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com