【題目】已知a是實(shí)數(shù),函數(shù)

1)若,求a的值及曲線在點(diǎn)處的切線方程;

2)討論函數(shù)在區(qū)間上的單調(diào)性.

【答案】1,;(2)見解析.

【解析】

1)化簡(jiǎn)并對(duì)其求導(dǎo),由的值構(gòu)建方程,求得a,進(jìn)而由點(diǎn)斜式表示切線方程;

2)對(duì)求導(dǎo),令,表示兩根,利用分類討論含參數(shù)的根所在區(qū)間,從而得其導(dǎo)函數(shù)的正負(fù)關(guān)系,即原函數(shù)的單調(diào)性對(duì)應(yīng)增減.

1,

,,,,

因此,曲線在點(diǎn)處的切線方程為,即

2,,

,得,

①當(dāng)時(shí),即當(dāng)時(shí),對(duì)任意的,

此時(shí),函數(shù)在區(qū)間上單調(diào)遞增.

②當(dāng)時(shí),即當(dāng)時(shí),

此時(shí),當(dāng),則;

當(dāng)時(shí),

此時(shí),函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;

③當(dāng)時(shí),即當(dāng)時(shí),對(duì)任意的,

此時(shí),函數(shù)在區(qū)間上單調(diào)遞減.

綜上所述,當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞增;

當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;

當(dāng)時(shí),函數(shù)在區(qū)間單調(diào)遞減.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)P是橢圓上一點(diǎn),MN分別是兩圓(x+4)2y2=1(x-4)2y2=1上的點(diǎn),則|PM|+|PN|的最小值、最大值分別為 ( )

A. 9,12 B. 8,11 C. 10,12 D. 8,12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋擲紅、藍(lán)兩顆骰子,當(dāng)已知紅色骰子的點(diǎn)數(shù)為偶數(shù)時(shí),兩顆骰子的點(diǎn)數(shù)之和不小于9的概率是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究高中學(xué)生對(duì)鄉(xiāng)村音樂的態(tài)度(喜歡和不喜歡兩種態(tài)度)與性別的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計(jì)算K2=8.01,附表如下:

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

參照附表,得到的正確的結(jié)論是(  )

A. 有99%以上的把握認(rèn)為“喜歡鄉(xiāng)村音樂與性別有關(guān)”

B. 有99%以上的把握認(rèn)為“喜歡鄉(xiāng)村音樂與性別無關(guān)”

C. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“喜歡鄉(xiāng)村音樂與性別有關(guān)”

D. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“喜歡鄉(xiāng)村音樂與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在交通工程學(xué)中,常作如下定義:交通流量(輛/小時(shí)):?jiǎn)挝粫r(shí)間內(nèi)通過道路上某一橫斷面的車輛數(shù);車流速度(千米/小時(shí)):?jiǎn)挝粫r(shí)間內(nèi)車流平均行駛過的距離;車流密度(輛/千米):?jiǎn)挝婚L(zhǎng)度道路上某一瞬間所存在的車輛數(shù). 一般的,滿足一個(gè)線性關(guān)系,即(其中是正數(shù)),則以下說法正確的是

A. 隨著車流密度增大,車流速度增大

B. 隨著車流密度增大,交通流量增大

C. 隨著車流密度增大,交通流量先減小,后增大

D. 隨著車流密度增大,交通流量先增大,后減小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)為,離心率為.為橢圓的左頂點(diǎn),為橢圓上異于的兩個(gè)動(dòng)點(diǎn),直線與直線分別交于兩點(diǎn).

(I)求橢圓的方程;

(II)若的面積之比為,求的坐標(biāo);

(III)設(shè)直線軸交于點(diǎn),若三點(diǎn)共線,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為,點(diǎn)在橢圓上,且的最小值是為坐標(biāo)原點(diǎn)).

1)求橢圓的標(biāo)準(zhǔn)方程.

2)已知?jiǎng)又本與圓相切,且與橢圓交于,兩點(diǎn).是否存在實(shí)數(shù),使得?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】教材曾有介紹:圓上的點(diǎn)處的切線方程為我們將其結(jié)論推廣:橢圓的點(diǎn)處的切線方程為在解本題時(shí)可以直接應(yīng)用,已知直線與橢圓E有且只有一個(gè)公共點(diǎn).

1)求的值;

2)設(shè)O為坐標(biāo)原點(diǎn),過橢圓E上的兩點(diǎn)A、B分別作該橢圓的兩條切線,且交于點(diǎn)M

①設(shè),直線AB、OM的斜率分別為,求證:為定值;

②設(shè),求OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快餐連鎖店招聘外賣騎手,該快餐連鎖店提供了兩種日工資方案:方案①:規(guī)定每日底薪50元,快遞業(yè)務(wù)每完成一單提成3元;方案②:規(guī)定每日底薪100元,快遞業(yè)務(wù)的前44單沒有提成,從第45單開始,每完成一單提成5元.該快餐連鎖店記錄了每天騎手的人均業(yè)務(wù)量.現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為,,,,,七組,整理得到如圖所示的頻率分布直方圖.

(1)隨機(jī)選取一天,估計(jì)這一天該連鎖店的騎手的人均日快遞業(yè)務(wù)量不少于65單的概率;

(2)若騎手甲、乙選擇了日工資方案①,丙、丁選擇了日工資方案②.現(xiàn)從上述4名騎手中隨機(jī)選取2人,求至少有1名騎手選擇方案①的概率;

(3)若從人均日收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為新聘騎手做出日工資方案的選擇,并說明理由.(同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)

查看答案和解析>>

同步練習(xí)冊(cè)答案