【題目】P是橢圓上一點,MN分別是兩圓(x+4)2y2=1(x-4)2y2=1上的點,則|PM|+|PN|的最小值、最大值分別為 ( )

A. 9,12 B. 8,11 C. 10,12 D. 8,12

【答案】D

【解析】

橢圓的焦點恰好是兩圓的圓心,利用橢圓的定義先求出點P到兩焦點的距離|PF1|+|PF2|,然后|PM|+|PN|的最小值、最大值轉化成|PF1|+|PF2|減去兩個半徑和加上兩個半徑.

∵兩圓圓心F1(﹣4,0),F2(4,0)恰好是橢圓的焦點,

∴|PF1|+|PF2|=10,兩圓的半徑r=1,

∴(|PM|+|PN|)min=|PF1|+|PF2|﹣2r=10﹣2=8.

(|PM|+|PN|)max=|PF1|+|PF2|+2r=10+2=12.

故選:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在區(qū)間[0,1]內隨機取兩個數(shù)分別為a,b,則使得方程x2+2ax+b2=0有實根的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】北宋數(shù)學家沈括的主要數(shù)學成就之一為隙積術,所謂隙積,即“積之有隙”者,如累棋、層壇之類,這種長方臺形狀的物體垛積.設隙積共n層,上底由長為a個物體,寬為b個物體組成,以下各層的長、寬依次各增加一個物體,最下層成為長為c個物體,寬為d個物體組成,沈括給出求隙積中物體總數(shù)的公式為S= .已知由若干個相同小球粘黏組成的幾何體垛積的三視圖如圖所示,則該垛積中所有小球的個數(shù)為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且
(1)求A的大。
(2)若 ,D是BC的中點,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個小球從100米高處自由落下,每次著地后又跳回到原高度的一半再落下.執(zhí)行下面的程序框圖,則輸出的S表示的是(
A.小球第10次著地時向下的運動共經(jīng)過的路程
B.小球第11次著地時向下的運動共經(jīng)過的路程
C.小球第10次著地時一共經(jīng)過的路程
D.小球第11次著地時一共經(jīng)過的路程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】曲線C是平面內與兩個定點F1(﹣2,0),F(xiàn)2(2,0)的距離之積等于9的點的軌跡.給出下列命題: ①曲線C過坐標原點;
②曲線C關于坐標軸對稱;
③若點P在曲線C上,則△F1PF2的周長有最小值10;
④若點P在曲線C上,則△F1PF2面積有最大值
其中正確命題的個數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,已知點P(2,0),曲線C的參數(shù)方程為 (t為參數(shù)).以坐標原點為極點,x軸正半軸為極軸建立極坐標系. (Ⅰ)求曲線C的普通方程和極坐標方程;
(Ⅱ)過點P且傾斜角為 的直線l交曲線C于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F為拋物線C:x2=2py(p>0)的焦點,過F的直線l與C交于A,B兩點,M為AB中點,點M到x軸的距離為d,|AB|=2d+1.
(1)求p的值;
(2)過A,B分別作C的兩條切線l1 , l2 , l1∩l2=N.請選擇x,y軸中的一條,比較M,N到該軸的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin2x的圖象向左平移 個單位后,得到函數(shù)y=g(x)的圖象,下列關于y=g(x)的說法正確的是( )
A.圖象關于點(﹣ ,0)中心對稱
B.圖象關于x=﹣ 軸對稱
C.圖象關于點(﹣ ,0)中心對稱
D.圖象關于x=﹣ 軸對稱

查看答案和解析>>

同步練習冊答案