分析 求出集合A={x|-1≤x≤2},由B={x|x2-2x+k≤0},B⊆A,得當(dāng)B=∅時,△=4-4k<0;當(dāng)B≠∅時,有x2-2x+k的兩根均在[-1,2]內(nèi).由此能求出k的范圍.
解答 解:∵集合A={x|x2-x-2≤0}={x|-1≤x≤2},
B={x|x2-2x+k≤0},B⊆A,
∴當(dāng)B=∅時,∴△=4-4k<0,解得,k>1.
當(dāng)B≠∅時,有x2-2x+k的兩根均在[-1,2]內(nèi),
設(shè)f(x)=x2-2x+k,
則$\left\{\begin{array}{l}{△=4-4k≥0}\\{f(-1)=1+2+k≥0}\\{f(2)=4-4+k≥0}\end{array}\right.$,
解得0≤k≤1.
綜上,k的取值范圍為[0,+∞).
點(diǎn)評 本題考查實數(shù)的取值范圍的求法,考查集合的包含關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,考查函數(shù)與方程思想,是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若向量$\overrightarrow a=(x,y)$,向量$\overrightarrow b=(-y,x)$(xy≠0),則$\overrightarrow a⊥\overrightarrow b$ | |
B. | 若四邊形ABCD為菱形,則$\overrightarrow{AB}=\overrightarrow{DC}\;,\;且|\overrightarrow{AB}|=|\overrightarrow{AD}|$ | |
C. | 點(diǎn)G是△ABC的重心,則$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow 0$ | |
D. | △ABC中,$\overrightarrow{AB}$和$\overrightarrow{CA}$的夾角等于A |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | ¬p | C. | p∧(¬q) | D. | (¬p)∨(q) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
月份x | 1 | 2 | 3 | 4 |
利潤y(單位:百萬元) | 4 | 4 | 6 | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{2}$) | B. | (0,1) | C. | ($\frac{1}{2}$,0) | D. | (1,0) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com