2.已知函數(shù)f(x)=mex-x-1.(其中e為自然對數(shù)的底數(shù))
(1)若曲線y=f(x)過點(diǎn)P(0,1),求曲線y=f(x)在點(diǎn)P(0,1)處的切線方程.
(2)若f(x)>0恒成立,求m的取值范圍.
(3)若f(x)兩個(gè)零點(diǎn)為x1,x2且x1<x2,求y=(e${\;}^{{x}_{2}}$-e${\;}^{{x}_{1}}$)($\frac{1}{{e}^{{x}_{2}}+{e}^{{x}_{1}}}$-m)的值域.

分析 (1)代入,求導(dǎo),利用導(dǎo)數(shù)的概念求值即可;
(2)對不等式整理得m>$\frac{x+1}{{e}^{x}}$,構(gòu)造函數(shù),利用導(dǎo)函數(shù)求出右式的最大值即可.
(3)把零點(diǎn)代入,對函數(shù)整理為y=(e${\;}^{{x}_{2}}$-e${\;}^{{x}_{1}}$)($\frac{1}{{e}^{{x}_{2}}+{e}^{{x}_{1}}}$-m)=$\frac{{e}^{{x}_{2}-{x}_{1}}-1}{{e}^{{x}_{2}-{x}_{1}}+1}$-(x2-x1),利用換元法令x2-x1=t,得出函數(shù)g(t)=$\frac{{e}^{t}-1}{{e}^{t}+1}$-t(t>0),利用導(dǎo)函數(shù)得出函數(shù)的單調(diào)性,根據(jù)單調(diào)性得出函數(shù)的值域.

解答 解:(1)當(dāng)x=0時(shí),f(0)=m-1=1,
∴m=2,
∵f'(x)=2ex-1,f'(0)=1,
∴所求切線方程y=x+1,即x-y+1=0;
(2)由f(x)>0得mex-x-1>0,即有m>$\frac{x+1}{{e}^{x}}$
令μ(x)=$\frac{x+1}{{e}^{x}}$,則μ'(x)=$\frac{-x}{{e}^{x}}$,…(5分)
令μ'(x)=$\frac{-x}{{e}^{x}}$>0得x<0,μ'(x)=$\frac{-x}{{e}^{x}}$<0得x>0
∴μ(x)在(-∞0)上單調(diào)遞增,在(0,+∞)上單調(diào)遞減.
∴μ(x)的最大值為μ(0)=1,
∴m>1;                       
(3)由題意,mex1-x1-1=0,mex2-x2-1=0.                 …(9分)
y=(e${\;}^{{x}_{2}}$-e${\;}^{{x}_{1}}$)($\frac{1}{{e}^{{x}_{2}}+{e}^{{x}_{1}}}$-m)=$\frac{{e}^{{x}_{2}-{x}_{1}}-1}{{e}^{{x}_{2}-{x}_{1}}+1}$-(x2-x1
令x2-x1=t
g(t)=$\frac{{e}^{t}-1}{{e}^{t}+1}$-t(t>0),
∵g'(t)=$\frac{-{e}^{2t}-1}{({e}^{t}+1)^{2}}$<0,
∴g(t)在(0,+∞)在上單調(diào)遞減,
∴g(t)<g(0)=0.
∴g(t)∈(-∞,0)
∴y=(e${\;}^{{x}_{2}}$-e${\;}^{{x}_{1}}$)($\frac{1}{{e}^{{x}_{2}}+{e}^{{x}_{1}}}$-m)的值域?yàn)椋?∞,0).

點(diǎn)評 本題考查了導(dǎo)函數(shù)的應(yīng)用,函數(shù)的構(gòu)造,換元法的應(yīng)用和零點(diǎn)的概念.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若某程序框圖如圖所示,則輸出的S的值是( 。
A.0B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{2}$+1D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={x|${\frac{x-2}{x+1$≤0},B={-1,0,1,2,3},則A∩B等于(  )
A.{-1,0,1}B.{1,2,3}C.{0,1,2}D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,PA⊥底面ABC,PA=1,AB=3,AC=4,BC=5;
(1)求二面角P-BC-A的余弦值;
(2)求點(diǎn)A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x2-2ax,g(x)=lnx.
(Ⅰ)若f(x)≥g(x)對于定義域內(nèi)的任意x恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)h(x)=f(x)+g(x)有兩個(gè)極值點(diǎn)x1,x2且${x_1}∈(0,\frac{1}{2})$,證明:h(x1)-h(x2)>$\frac{3}{4}$-ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四棱錐P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD都是邊長為1的正三角形,DC=2,E為DC的中點(diǎn).
(I)求證:PA⊥BD;
(Ⅱ)求直線PE與平面PDB所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.為了調(diào)查某中學(xué)學(xué)生在周日上網(wǎng)的時(shí)間,隨機(jī)對100名男生和100名女生進(jìn)行了不記名的問卷調(diào)查,得到了如下統(tǒng)計(jì)結(jié)果:
表1:男生上網(wǎng)時(shí)間與頻數(shù)分布表
 上網(wǎng)時(shí)間(分鐘)[30,40)[40,50)[50,60)[60,70)[70,80]
 人數(shù) 525  3025  15
表2:女生上網(wǎng)時(shí)間與頻數(shù)分布表
 上網(wǎng)時(shí)間(分鐘)[30,40)[40,50)[50,60)[60,70)[70,80]
 人數(shù)10  2040  2010 
(1)若該中學(xué)共有女生600人,試估計(jì)其中上網(wǎng)時(shí)間不少于60分鐘的人數(shù);
(2)完成表3的2×2列聯(lián)表,并回答能否有90%的把握認(rèn)為“學(xué)生周日上午時(shí)間與性別有關(guān)”;
(3)從表3的男生中“上網(wǎng)時(shí)間少于60分鐘”和“上網(wǎng)時(shí)間不少于60分鐘”的人數(shù)中用分層抽樣的方法抽取一個(gè)容量為10的樣本,再從中任取2人,記被抽取的2人中上午時(shí)間少于60分鐘的人數(shù)記為X,求X的分布列和數(shù)學(xué)期望.
表3
 上網(wǎng)時(shí)間少于60分鐘  上網(wǎng)時(shí)間不少于60分鐘合計(jì) 
 男生   
 女生   
 合計(jì)   
附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
 P(k2≥k0 0.50 0.400.25  0.150.10 0.05  0.0250.010  0.0050.001 
k0  0.4550.708  1.3232.072  2.076 3.845.024  6.6357.879  10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=alnx+$\frac{1}{x}$+$\frac{1}{2{x}^{2}}$(a∈R).
(1)討論f(x)的增減性;
(2)求證:4x2lnx-3x2+2x+1≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.給出如下四個(gè)命題:
①若“p∨q”為真命題,則p,q均為真命題;
②“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
③“?x∈R,x2+x≥1”的否定是“?x0∈R,x${\;}_{0}^{2}$+x0≤1”;
④“x>1”是“x>0”的充分不必要條件.
其中不正確的命題是( 。
A.①②B.②③C.①③D.③④

查看答案和解析>>

同步練習(xí)冊答案