6.下列說法錯誤的是(  )
A.已知a,b,m∈R,命題“若am2<bm2,則a<b”為真命題
B.命題“?x0∈R,x02-x0>0”的否定是“?x∈R,x2-x≤0”
C.命題“p且q”為真命題,則命題p和命題q均為真命題
D.“x>3”是“x>2”的必要不充分條件

分析 A根據(jù)不等式的性質(zhì)可判斷;
B中否命題是先否定條件,再否定結(jié)論;
C根據(jù)且命題的定義可判斷;
D根據(jù)充分條件,必要條件的概念判斷即可.

解答 解:A中已知a,b,m∈R,由am2<bm2,可知m2>0,可得a<b”,故正確;
B否命題是先否定條件,再否定結(jié)論,對存在命題,把存在一個改為任意,再把結(jié)論否定,
∴命題“?x0∈R,x02-x0>0”的否定是“?x∈R,x2-x≤0”,故正確;
C命題“p且q”為真命題,可得p真,q真,則命題p和命題q均為真命題,故正確;
D“x>3”可推出“x>2”,反之不一定,故應(yīng)是充分不必要條件,故錯誤.
故選:D.

點評 考查了不等式的性質(zhì),命題的否命題,存在命題的否命題,屬于基礎(chǔ)題型,應(yīng)熟練掌握.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在凸多邊形當(dāng)中顯然有F+V-E=1(其中F:面數(shù),V:頂點數(shù),E:邊數(shù))類比到空間凸多面體中有相應(yīng)的結(jié)論為;F+V-E=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期12月1日12月2日12月3日12月4日12月5日
溫差x(℃)101113128
發(fā)芽y(顆)2325302616
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,剩下的2組數(shù)據(jù)用于回歸方程檢驗.
(1)若選取的是12月1日與12月5日的2組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}=\stackrel{∧}x+\stackrel{∧}{a}$;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(3)請預(yù)測溫差為14℃的發(fā)芽數(shù).
其中
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{{x}^{\;}}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知拋物線y2=4x的焦點為F,點P是拋物線上的動點,A(2,2),則|PA|+|PF|的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在一次數(shù)學(xué)測試中,某班40名學(xué)生的成績頻率分布直方圖如圖所示(學(xué)生成績都在[50,100]之間).
(Ⅰ)求頻率分布直方圖中a的值,并估算該班數(shù)學(xué)成績的平均值;
(Ⅱ)若規(guī)定成績達(dá)到90分及以上為優(yōu)秀,從該班40名學(xué)生中任選2人,求至少有一人成績?yōu)閮?yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知△ABC的三邊長分別為AB=5,BC=4,AC=3,M是AB邊上的點,P是平面ABC外一點,給出下列四個命題:
①若PA⊥平面ABC,則三棱錐P-ABC的四個面都是直角三角形;
②若PM⊥平面ABC,且M是AB邊的中點,則有PA=PB=PC;
③若PC=5,PC⊥平面ABC,則△PCM面積的最小值為$\frac{15}{2}$;
④若PC=5,P在平面ABC上的射影是內(nèi)切圓的圓心O,則PO長為$\sqrt{23}$;
其中正確命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知橢圓方程為$\frac{x^2}{16}+\frac{y^2}{9}$=1,則它的兩焦點之間的距離為$2\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知p:(x+2)(x-6)≤0,q:|x-2|<5,命題“p∨q”為真,“p∧q”為真,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.存在函數(shù)f(x)滿足:對于任意x∈R都有( 。
A.f(sin2x)=sinxB.f(x2+2x)=|x+1|C.f(sin2x)=x2+xD.f(x2+1)=|x+1|

查看答案和解析>>

同步練習(xí)冊答案