分析 設(shè)BF=m,由拋物線的定義知AA1和BB1,進(jìn)而可推斷出AC和AB,及直線AB的斜率,則直線AB的方程可得,與拋物線方程聯(lián)立消去y,進(jìn)而跟韋達(dá)定理求得x1+x2的值,則根據(jù)拋物線的定義求得弦AB的長度.
解答 解:設(shè)$|\overrightarrow{FB}|=m$,由$\overrightarrow{AF}=3\overrightarrow{FB}$,可得:$|\overrightarrow{FA}|$=3m,
由拋物線的定義知AA1=3m,BB1=m,
∴△ABC中,AC=2m,AB=4m,kAB=$\sqrt{3}$,
∴直線AB方程為y=$\sqrt{3}$(x-1),
與拋物線方程聯(lián)立消y得3x2-10x+3=0
所以|AB|=x1+x2+2=$\frac{16}{3}$,
故答案為:$\frac{16}{3}$.
點(diǎn)評 本題主要考查了拋物線的簡單性質(zhì).考查了直線與拋物線的關(guān)系及焦點(diǎn)弦的問題.常需要利用拋物線的定義來解決.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | M={1,0} | B. | M={(1,0)} | C. | M=(1,0) | D. | M={1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ①④ | D. | ②③ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com