A. | (2,+∞) | B. | (-∞,-1)∪(3,+∞) | C. | (-4,2) | D. | (-∞,-4) |
分析 求出x<0時(shí),函數(shù)的解析式,當(dāng)x>0時(shí),f(x)=$\frac{1}{x+1}-lo{g}_{2}$(x+1),函數(shù)單調(diào)遞減,且f(x)<1,即可解不等式.
解答 解:設(shè)x<0,則-x>0時(shí),
∵函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=$\frac{1}{x+1}-lo{g}_{2}$(x+1),
∴f(x)=-f(-x)=$\frac{1}{x-1}$+log2(-x+1),
∵當(dāng)x>0時(shí),f(x)=$\frac{1}{x+1}-lo{g}_{2}$(x+1),函數(shù)單調(diào)遞減,且f(x)<1,
∴不等式4f(x+1)>7,即不等式f(x+1)>$\frac{7}{4}$,
∴$\left\{\begin{array}{l}{x+1<0}\\{\frac{1}{x}+lo{g}_{2}(-x)>\frac{7}{4}}\end{array}\right.$,∴x<-4.
故選D.
點(diǎn)評(píng) 本題考查解不等式,考查函數(shù)解析式的求解,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{4}^{n}-1}{3}$ | B. | $\frac{1-{4}^{n}}{3}$ | C. | $\frac{1{6}^{n}-1}{15}$ | D. | $\frac{1-1{6}^{n}}{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)y=sinx,x∈[0,2π]是奇函數(shù) | |
B. | 函數(shù)y=2sin($\frac{π}{6}$-2x)在區(qū)間[-$\frac{π}{6},\frac{π}{3}$]上單調(diào)遞減 | |
C. | 函數(shù)y=2sin($\frac{π}{3}-2x$)-cos($\frac{π}{6}+2x$)(x∈R)的一條對(duì)稱軸方程是x=$\frac{π}{6}$ | |
D. | 函數(shù)y=sinπx•cosπx的最小正周期為2,且它的最大值為1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com