【題目】某高校共有學(xué)生15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).
(1)應(yīng)收集多少位女生樣本數(shù)據(jù)?
(2)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:,,,,,.估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過6個(gè)小時(shí)的概率.
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過4個(gè)小時(shí).請完成每周平均體育運(yùn)動(dòng)時(shí)間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”.
附:.
【答案】(1)90位(2)(3)填表見解析;有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”
【解析】
(1)根據(jù)頻率分布直方圖進(jìn)行求解即可;
(2)由頻率分布直方圖先求出對應(yīng)的頻率,即可估計(jì)對應(yīng)的概率;
(3)利用獨(dú)立性檢驗(yàn)進(jìn)行求解即可.
(1).所以,應(yīng)該收集90位女生的樣本數(shù)據(jù).
(2)由頻率分布直方圖得
所以該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過6小時(shí)的概率的估計(jì)值為.
(3)每周平均運(yùn)動(dòng)時(shí)間超過4小時(shí)的頻率為0.375×2=0.75,所以超過4小時(shí)的總?cè)藬?shù)為300×0.75=225,
每周平均運(yùn)動(dòng)時(shí)間與性別列聯(lián)表如下:
男生超過4小時(shí) | 運(yùn)動(dòng)不超過4小時(shí) | 合計(jì) | |
男生 | 165 | 45 | 210 |
女生 | 60 | 30 | 90 |
合計(jì) | 225 | 75 | 300 |
,
所以,有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,側(cè)面底面ABCD,,,E,Q分別是BC和PC的中點(diǎn).
(I)求直線BQ與平面PAB所成角的正弦值;
(Ⅱ)求二面角E-DQ-P的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲,乙兩人進(jìn)行定點(diǎn)投籃活動(dòng),已知他們每投籃一次投中的概率分別是和,每次投籃相互獨(dú)立互不影響.
(Ⅰ)甲乙各投籃一次,記“至少有一人投中”為事件A,求事件A發(fā)生的概率;
(Ⅱ)甲乙各投籃一次,記兩人投中次數(shù)的和為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望;
(Ⅲ)甲投籃5次,投中次數(shù)為ξ,求ξ=2的概率和隨機(jī)變量ξ的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2011年,國際數(shù)學(xué)協(xié)會(huì)正式宣布,將每年的3月14日設(shè)為“國際數(shù)學(xué)節(jié)”,其來源是中國古代數(shù)學(xué)家祖沖之的圓周率,為慶祝該節(jié)日,某校舉辦的“數(shù)學(xué)嘉年華”活動(dòng)中,設(shè)計(jì)了如下的有獎(jiǎng)闖關(guān)游戲:參賽選手按第一關(guān)、第二關(guān)、第三關(guān)的順序依次闖關(guān),若闖關(guān)成功,則分別獲得5個(gè)、10個(gè)、20個(gè)學(xué)豆的獎(jiǎng)勵(lì).游戲還規(guī)定:當(dāng)選手闖過一關(guān)后,可以選擇帶走相應(yīng)的學(xué)豆,結(jié)束游戲;也可以選擇繼續(xù)闖下一關(guān),若有任何一關(guān)沒有闖關(guān)成功,則全部學(xué)豆歸零,游戲結(jié)束.設(shè)選手甲能闖過第一關(guān)、第二關(guān)、第三關(guān)的概率分別為,選手選擇繼續(xù)闖關(guān)的概率均為,且各關(guān)之間闖關(guān)成功與否互不影響.
(1)求選手甲第一關(guān)闖關(guān)成功且所得學(xué)豆為零的概率;
(2)設(shè)該選手所得學(xué)豆總數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】市某機(jī)構(gòu)為了調(diào)查該市市民對我國申辦年足球世界杯的態(tài)度,隨機(jī)選取了位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如下:
支持 | 不支持 | 合計(jì) | |
男性市民 | |||
女性市民 | |||
合計(jì) |
(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)利用(1)完成的表格數(shù)據(jù)回答下列問題:
(i)能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為支持申辦足球世界杯與性別有關(guān);
(ii)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有位退休老人,其中位是教師,現(xiàn)從這位退休老人中隨機(jī)抽取人,求至多有位老師的概率.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓錐(其中為頂點(diǎn),為底面圓心)的側(cè)面積與底面積的比是,則圓錐與它外接球(即頂點(diǎn)在球面上且底面圓周也在球面上)的體積比為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在 △ABC 中,設(shè) a,b,c 分別是角 A,B,C 的對邊,已知向量 = (a,sinC-sinB),= (b + c,sinA + sinB),且
(1) 求角 C 的大小
(2) 若 c = 3, 求 △ABC 的周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,其中、均為實(shí)數(shù).
(Ⅰ)若,求的取值范圍;
(Ⅱ)設(shè),若,在區(qū)間上總存在、使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)購平臺為了解某市居民在該平臺的消費(fèi)情況,從該市使用其平臺且每周平均消費(fèi)額超過100元的人員中隨機(jī)抽取了100名,并繪制如圖所示頻率分布直方圖,已知中間三組的人數(shù)可構(gòu)成等差數(shù)列.
(1)求的值;
(2)分析人員對100名調(diào)查對象的性別進(jìn)行統(tǒng)計(jì)發(fā)現(xiàn),消費(fèi)金額不低于300元的男性有20人,低于300元的男性有25人,根據(jù)統(tǒng)計(jì)數(shù)據(jù)完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為消費(fèi)金額與性別有關(guān)?
(3)分析人員對抽取對象每周的消費(fèi)金額與年齡進(jìn)一步分析,發(fā)現(xiàn)他們線性相關(guān),得到回歸方程.已知100名使用者的平均年齡為38歲,試判斷一名年齡為25歲的年輕人每周的平均消費(fèi)金額為多少.(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值代替)
列聯(lián)表
男性 | 女性 | 合計(jì) | |
消費(fèi)金額 | |||
消費(fèi)金額 | |||
合計(jì) |
臨界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
,其中
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com