14.(x2-$\frac{1}{x}$)9的二項(xiàng)展開式中,含x9項(xiàng)的系數(shù)是-84.

分析 根據(jù)二項(xiàng)展開式的通項(xiàng)公式,令x的冪指數(shù)等于9,求得r的值,即可求出二項(xiàng)展開式中含x9的系數(shù).

解答 解:∵(x2-$\frac{1}{x}$)9的二項(xiàng)展開式的通項(xiàng)公式為
Tr+1=${C}_{9}^{r}$•(-1)r•x18-3r,令18-3r=9,求得 r=3,
故二項(xiàng)展開式中含x9的系數(shù)是${C}_{9}^{3}$•(-1)3=-84.
故答案為:-84.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.甲、乙兩人各自獨(dú)立地進(jìn)行射擊比賽,甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是$\frac{2}{3}$和$\frac{3}{4}$,假設(shè)每次射擊是否擊中目標(biāo)相互之間沒有影響.
(Ⅰ)求甲射擊3次,至少有1次未擊中目標(biāo)的概率;
(Ⅱ)求兩人各射擊3次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)1次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.(1)已知正數(shù)a,b滿足2a2+b2=3,求a$\sqrt{^{2}+1}$的最大值;
(2)已知正實(shí)數(shù)x,y滿足xy=1,求($\frac{x}{y}$+y)($\frac{y}{x}$+x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.(1-$\frac{1}{2}$x)(1+2$\sqrt{x}$)5展開式中x2的系數(shù)為60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在未來(lái)3天中,某氣象臺(tái)預(yù)報(bào)天氣的準(zhǔn)確率為0.8,則在未來(lái)3天中,至少連續(xù)2天預(yù)報(bào)準(zhǔn)確的概率是0.768.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知某運(yùn)動(dòng)員每次投籃命中的概率低于40%.現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器算出0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):
458     569    683     907     966    191     925     271     932    812
431     257    393     027     556     488    730     113     537   989
據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為0.25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在△ABC中,已知向量$\overrightarrow{AB}$=(2,2),|$\overrightarrow{AC}$|=2,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-4,則∠A=(  )
A.$\frac{5π}{6}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合A={x|x2-2x>0},B={x|x>1},則(∁RA)∩B等于(  )
A.[1,2)B.(1,2)C.(1,2]D.(-∞,0)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,已知ABCD為直角梯形,其中∠B=∠C=90°,以AD為直徑作⊙O交BC于E,F(xiàn)兩點(diǎn).證明:
(I) BE=CF;
(II) AB•CD=BE•BF.

查看答案和解析>>

同步練習(xí)冊(cè)答案