分析 (1)在△BCF中,CF=x,∠FBC=30°,CF⊥BF,BC=2x.在△ABC中,AB=y,AC=y-1,∠ABC=60°,由余弦定理,求解函數(shù)的解析式,然后求解定義域.
(2)求出M=30•(2y-1)+40x,通過基本不等式求解表達式的最值即可.
解答 (1)在△BCF中,CF=x,∠FBC=30°,CF⊥BF,所以BC=2x.
在△ABC中,AB=y,AC=y-1,∠ABC=60°,
由余弦定理,得AC2=BA2+BC2-2BA•BCcos∠ABC,…(2分)
即 ((y-1)2=y2+(2x)2-2y•2x•cos60°,
所以 $y=\frac{4{x}^{2}-1}{2x-2}$.…(5分)
由AB-AC<BC,得$2x>1,x>\frac{1}{2}$.又因為 $y=\frac{4{x}^{2}-1}{2x-2}$>0,所以x>1.
所以函數(shù)$y=\frac{4{x}^{2}-1}{2x-2}$的定義域是(1,+∞).…(6分)
(2)M=30•(2y-1)+40x.…(8分)
因為$y=\frac{4{x}^{2}-1}{2x-2}$.(x>1),所以M=30$•(2•\frac{4{x}^{2}-1}{2x-2}-1)+40x$
即 M=10$•(\frac{12{x}^{2}-3}{x-1}+4x-1)$.…(10分)
令t=x-1,則t>0.于是M(t)=10(16t+$\frac{9}{t}+25$),t>0,…(12分)
由基本不等式得M(t)≥10(2$\sqrt{144}+25$)=490,
當且僅當t=$\frac{3}{4}$,即x=$\frac{7}{4}$時取等號.…(15分)
答:當x=$\frac{7}{4}$km時,公司建中轉(zhuǎn)站圍墻和兩條道路最低總造價M為490萬元.…(16分)
點評 本題考查實際問題的應(yīng)用,基本不等式求解表達式的最值,考查思想以及計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com