1.已知圓(x+a)2+y2=1與圓x2+y2=16沒有公共點,則正數(shù)a的取值范圍為(0,3)∪(5,+∞).

分析 求解兩個圓有公共點的范圍,然后求解正數(shù)a的取值范圍.

解答 解:圓(x+a)2+y2=1圓心(-a,0)半徑為1;圓x2+y2=16圓心(0,0)半徑為4,
如果兩個圓有公共點,可得3≤|a|≤5,解得a∈[3,5]∪[-5,-3],
圓(x+a)2+y2=1與圓x2+y2=16沒有公共點,則正數(shù)a的取值范圍為:(0,3)∪(5,+∞).
故答案為:(0,3)∪(5,+∞).

點評 本題考查圓與圓的位置關系的應用,逆向思維是解題的策略,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知($\root{3}{x}$+$\frac{1}{2\sqrt{x}}$)n(n∈N*)的展開式中前三項的系數(shù)成等差數(shù)列.
(1)求展開式中二項式系數(shù)最大的項;
(2)求展開式中的有理項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.平行四邊形ABCD中,AB=2,AD=1,$∠BAD=\frac{π}{3}$,則|$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{AC}$|=2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開辟為水果園種植桃樹,已知角A為120°,AB,AC的長度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.
(1)若圍墻AP,AQ總長度為200米,如何圍可使得三角形地塊APQ的面積最大?
(2)已知AP段圍墻高1米,AQ段圍墻高1.5米,AP段圍墻造價為每平方米150元,AQ段圍墻造價為每平方米100元.若圍圍墻用了30000元,問如何圍可使竹籬笆用料最?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.$cos({-\frac{4π}{3}})$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在△ABC中,D是邊BC上一點,$\overrightarrow{BD}=2\overrightarrow{DC},|{\overrightarrow{AD}}$|=1.
(1)用$\overrightarrow{AB},\overrightarrow{AD}$表示$\overrightarrow{AC}$;
(2)若$\overrightarrow{AB}•\overrightarrow{BD}+{\overrightarrow{AB}^2}$=0,求$\overrightarrow{AD}•\overrightarrow{AC}$的值;
(3)若AB=3,cos∠BAC=-$\frac{1}{3}$,求$|{\overrightarrow{BC}}$|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知數(shù)列{an}滿足an+2+an=an+1,且a1=2,a2=3,則a2017=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知集合M={x|x2>4},N={x|1<x<3},則N∩(∁RM)=( 。
A.{x|-2≤x<1}B.{x|-2≤x≤2}C.{x|1<x≤2}D.{x|x<2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,GH是東西方向的公路北側的邊緣線,某公司準備在GH上的一點B的正北方向的A處建設一倉庫,設AB=ykm,并在公路北側建造邊長為xkm的正方形無頂中轉站CDEF(其中EF在GH上),現(xiàn)從倉庫A向GH和中轉站分別修兩條道路AB,AC,已知AB=AC+1,且∠ABC=60°..
(1)求y關于x的函數(shù)解析式,并求出定義域;
(2)如果中轉站四堵圍墻造價為10萬元/km,兩條道路造價為30萬元/km,問:x取何值時,該公司建設中轉站圍墻和兩條道路總造價M最低.

查看答案和解析>>

同步練習冊答案