定義在上的函數(shù),滿足,,若,則有(   ).

A.B. C.D.不能確定

A

解析試題分析:根據(jù)確定函數(shù)的單調(diào)性,根據(jù)f(1-x)=f(x),可得f(x)關(guān)于x=對稱,進(jìn)一步分類討論x1與在x2的位置關(guān)系,即可得到f(x1)<f(x2).解:因為,則可知當(dāng)x>時,,f′(x)>0,函數(shù)單調(diào)增,x<時,f′(x)<0,函數(shù)單調(diào)減,故可知函數(shù)f(1-x)=f(x),可知函數(shù)在①x1在對稱軸x=的右邊或在對稱軸上,由x1<x2,易得f(x1)<f(x2);②x1在對稱軸x=的左邊,由x1+x2>3易得x2,∴x2在對稱軸x=的右邊.因為|x2-> - x1,即|x2-|>|-x1|,∴f(x1)<f(x2)綜合可得:f(x1)<f(x2)故選A.
考點:函數(shù)的單調(diào)性
點評:本題考查函數(shù)的單調(diào)性,考查函數(shù)的對稱性,正確運用函數(shù)的單調(diào)性與對稱性是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:單選題

函數(shù)的圖象如圖所示,則的解析式可能是 。    )  

A. B.
C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

下列各組函數(shù)中,表示同一函數(shù)的是(    )

A. B.
C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

函數(shù)是定義在R上的奇函數(shù),下列結(jié)論中,不正確的是

A. B.
C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖,函數(shù)y=f(x)的圖象為折線ABC,設(shè)f 1 (x)=f(x),f n+1 (x)=f [f n(x)],n∈N*,則函數(shù)y=f 4 (x)的圖象為


A.                            B.          

C.                             D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

定義在R上的函數(shù),對任意不等的實數(shù)都有成立,又函數(shù)的圖象關(guān)于點(1,0)對稱,若不等式成立,則當(dāng)1≤x<4時,的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知函數(shù),則,,的大小關(guān)系為

A.      B. 
C.    D. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知函數(shù)的定義域為,部分對應(yīng)值如下表。的導(dǎo)函數(shù)的圖像如圖所示。



0










下列關(guān)于函數(shù)的命題:
①函數(shù)上是減函數(shù);②如果當(dāng)時,最大值是,那么的最大值為;③函數(shù)個零點,則;④已知的一個單調(diào)遞減區(qū)間,則的最大值為。
其中真命題的個數(shù)是(           )
A、4個    B、3個  C、2個  D、1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè),若,則(   )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案