已知等差數(shù)列
前三項(xiàng)的和為
,前三項(xiàng)的積為
.
(Ⅰ)求等差數(shù)列
的通項(xiàng)公式;
(Ⅱ)若
,
,
成等比數(shù)列,求數(shù)列
的前
項(xiàng)和.
試題分析:(Ⅰ)設(shè)等差數(shù)列
的公差為
,則
,
,
由題意得
解得
或
所以由等差數(shù)列通項(xiàng)公式可得
,或
.
故
,或
.
(Ⅱ)當(dāng)
時(shí),
,
,
分別為
,
,
,不成等比數(shù)列;
當(dāng)
時(shí),
,
,
分別為
,
,
,成等比數(shù)列,滿足條件.
故
記數(shù)列
的前
項(xiàng)和為
. 當(dāng)
時(shí),
;當(dāng)
時(shí),
;
當(dāng)
時(shí),
. 當(dāng)
時(shí),滿足此式.
綜上,
點(diǎn)評(píng):本題主要考查等差數(shù)列的通項(xiàng)公式和等比數(shù)列的前n項(xiàng)和公式,已知數(shù)列為等差數(shù)列,求通項(xiàng)公式,求首項(xiàng)和公差即可,本題公差有兩個(gè),所以有兩個(gè)通項(xiàng)公式;求等比數(shù)列的前n項(xiàng)和時(shí),由已知準(zhǔn)確選擇公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
數(shù)列
的通項(xiàng)公式是
,若前n項(xiàng)的和為11,則n=______
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
設(shè)等差數(shù)列
的前
項(xiàng)之和
滿足
,那么
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
設(shè)等差數(shù)列
的前
項(xiàng)和是
,若
(
N
*,且
),則必定有( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
數(shù)列{a
n}是公比為
的等比數(shù)列,且1-a
2是a
1與1+a
3的等比中項(xiàng),前n項(xiàng)和為S
n;數(shù)列{b
n}是等差數(shù)列,b
1=8,其前n項(xiàng)和T
n滿足T
n=n
·b
n+1(
為常數(shù),且
≠1).
(I)求數(shù)列{a
n}的通項(xiàng)公式及
的值;
(Ⅱ)比較
+
+
+ +
與了
S
n的大。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知數(shù)列
為等差數(shù)列,若
,且它們的前
項(xiàng)和
有最大值,則使
的
的最大值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
在等差數(shù)列中,
,則
______
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知三次函數(shù)
為奇函數(shù),且在點(diǎn)
的切線方程為
(1)求函數(shù)
的表達(dá)式;
(2)已知數(shù)列
的各項(xiàng)都是正數(shù),且對(duì)于
,都有
,求數(shù)列
的首項(xiàng)
和通項(xiàng)公式;
(3)在(2)的條件下,若數(shù)列
滿足
,求數(shù)列
的最小值.
查看答案和解析>>