【題目】已知橢圓:.
(1)若拋物線的焦點(diǎn)與的焦點(diǎn)重合,求的標(biāo)準(zhǔn)方程;
(2)若的上頂點(diǎn)、右焦點(diǎn)及軸上一點(diǎn)構(gòu)成直角三角形,求點(diǎn)的坐標(biāo);
(3)若為的中心,為上一點(diǎn)(非的頂點(diǎn)),過的左頂點(diǎn),作,交軸于點(diǎn),交于點(diǎn),求證:.
【答案】(1)拋物線的標(biāo)準(zhǔn)方程為和.
(2)或.
(3)見解析
【解析】
(1)根據(jù)橢圓的方程和拋物線的性質(zhì)即可求出;
(2)按哪個(gè)角為直角進(jìn)行分類,結(jié)合數(shù)量積為0,計(jì)算得到M的坐標(biāo).
(3)由B(﹣3,0),BQ∥OP,設(shè)直線BQ的方程為x=my﹣3,直線OP的方程為x=my,分別于橢圓的方程聯(lián)立,求出點(diǎn)Q,N,P的坐標(biāo),再根據(jù)向量的運(yùn)算即可證明.
(1) 橢圓的焦點(diǎn)坐標(biāo)為和,拋物線的標(biāo)準(zhǔn)方程為和.
(2)設(shè)點(diǎn)的坐標(biāo)為,的上頂點(diǎn)的坐標(biāo)為,右焦點(diǎn)的坐標(biāo)為.
當(dāng)為直角頂點(diǎn)時(shí),點(diǎn)的坐標(biāo)為;
當(dāng)為直角頂點(diǎn)時(shí),,,由,解得,點(diǎn)的坐標(biāo)為.
因此,點(diǎn)的坐標(biāo)為或.
(3)設(shè)直線的方程為(),直線的方程為.
于是點(diǎn),的坐標(biāo),為方程組的實(shí)數(shù)解,
解得點(diǎn)的坐標(biāo)為.
點(diǎn),的坐標(biāo),為方程組的實(shí)數(shù)解,解得點(diǎn)的坐標(biāo)為.
又點(diǎn)的坐標(biāo)為.
于是,,,
,
,
即,得證.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對n個(gè)互不相等的正整數(shù),其中任意六個(gè)數(shù)中都至少存在兩個(gè)數(shù),使得其中一個(gè)能整除另一個(gè).求n的最小值,使得在這n個(gè)數(shù)中一定存在六個(gè)數(shù),其中一個(gè)能被另外五個(gè)整除.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1)證明:平面AEC;
(2)設(shè)AP=1,AD=,三棱錐P-ABD的體積V=,求A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處切線的方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)時(shí),恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,、是過點(diǎn)夾角為的兩條直線,且與圓心為,半徑長為的圓分別相切,設(shè)圓周上一點(diǎn)到、的距離分別為、,那么的最小值為(____).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有四個(gè)小球,分別寫有“海”“中”“加”“油”四個(gè)字,有放回地從中任取一個(gè)小球,取到“加”就停止,用隨機(jī)模擬的方法估計(jì)直到第二次停止的概率:先由計(jì)算器產(chǎn)生1到4之間取整數(shù)值的隨機(jī)數(shù),且用1、2、3、4表示取出小球上分別寫有“海”“中”“加”“油”四個(gè)字,以每兩個(gè)隨機(jī)數(shù)為一組,代表兩次的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):
13 24 12 32 43 14 24 32 31 21
23 13 32 21 24 42 13 32 21 34
據(jù)此估計(jì),直到第二次就停止概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將編號為1,2,…,18的18名乒乓球運(yùn)動員分配在9張球臺上進(jìn)行單打比賽,規(guī)定每一張球臺上兩選手編號之和均為大于4的平方數(shù).記{7號與18號比賽}為事件p.則p為( 。
A. 不可能事件 B. 概率為的隨機(jī)事件
C. 概率為的隨機(jī)事件 D. 必然事件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間如下:
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生期中考試數(shù)學(xué)成績的平均分;
(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個(gè)總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2021年開始,我省將試行“3+1+2“的普通高考新模式,即除語文、數(shù)學(xué)、外語3門必選科目外,考生再從物理、歷史中選1門,從化學(xué)、生物、地理、政治中選2門作為選考科目.為了幫助學(xué)生合理選科,某中學(xué)將高一每個(gè)學(xué)生的六門科目綜合成績按比例均縮放成5分制,繪制成雷達(dá)圖.甲同學(xué)的成績雷達(dá)圖如圖所示,下面敘述一定不正確的是( )
A.甲的物理成績領(lǐng)先年級平均分最多
B.甲有2個(gè)科目的成績低于年級平均分
C.甲的成績從高到低的前3個(gè)科目依次是地理、化學(xué)、歷史
D.對甲而言,物理、化學(xué)、地理是比較理想的一種選科結(jié)果
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com