18.某工廠隨機抽取部分工人調(diào)查其上班路上所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),若上班路上所需時間的范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100].
(1)求直方圖中a的值;
(2)如果上班路上所需時間不少于1小時的工人可申請在工廠住宿,若招工2400人,請估計所招工人中有多少名工人可以申請住宿;
(3)該工廠工人上班路上所需的平均時間大約是多少分鐘.

分析 (1)根據(jù)頻率和為1,列出方程求出a的值;
(2)計算工人上班所需時間不少于1小時的頻率,求出對應的頻數(shù)即可;
(3)利用各小組底邊中點坐標×對應頻率,再求和,即可得出平均時間.

解答 解:(1)由頻率分布直方圖可得:
0.125×20+a×20+0.0065×20+0.003×2×20=1,
解得:a=0.025;--------(4分)
(2)工人上班所需時間不少于1小時的頻率為:
0.003×2×20=0.12,
因為2400×0.12=288,
所以所招2400名工人中有288名工人可以申請住宿;--------(8分)
(3)該工廠工人上班路上所需的平均時間為:
10×0.25+30×0.5+50×0.13+70×0.06+90×0.06=33.6(分鐘).--------(12分)

點評 本題考查了頻率分布直方圖的應用問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.已知復數(shù)z與(z-3)2+5i 均為純虛數(shù),則z=±3i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)f(x)=log2(x2-x-2)的單調(diào)遞減區(qū)間是( 。
A.(-∞,-1)B.$(-1,\frac{1}{2}]$C.$[\frac{1}{2},2)$D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)f(x)=lg(4-x)+$\frac{1}{\sqrt{x-1}}$的定義域為( 。
A.(1,4)B.[1,4)C.(-∞,1)∪[4,+∞)D.(-∞,1]∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-\frac{2}{x},(x>\frac{1}{2})}\\{{x}^{2}+2x+a-1,(x≤\frac{1}{2})}\end{array}\right.$(其中a>0,a為常數(shù)),求函數(shù)f(x)的零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若ax2+ax+a+3≥0對一切實數(shù)x恒成立,則實數(shù)a的取值范圍是( 。
A.(-4,0)B.(-∞,-4)∪(0,+∞)C.[0,+∞)D.(-4,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在△ABC中,角A,B,C所對的邊長分別為a,b,c,且cos$\frac{A+C}{2}$=$\frac{1}{2}$.
(1)若a=3,b=$\sqrt{7}$,求c的值;
(2)若f(A)=sin$\frac{A}{2}$($\sqrt{3}$cos$\frac{A}{2}$-sin$\frac{A}{2}$)+$\frac{1}{2}$,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.定義在[-4,4]上的奇函數(shù)f(x),已知當x∈[-4,0]時,f(x)=$\frac{1}{4^x}$+$\frac{a}{3^x}$(a∈R).
(1)求f(x)在[0,4]上的解析式;
(2)若x∈[-2,-1]時,不等式f(x)≤$\frac{m}{2^x}$-$\frac{1}{{{3^{x-1}}}}$恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在△ABC中,A、B、C所對的邊分別為a、b、c,已知a2+b2-c2=$\sqrt{3}$ab,且acsinB=2$\sqrt{3}$sinC,則$\overrightarrow{CA}$•$\overrightarrow{CB}$=3.

查看答案和解析>>

同步練習冊答案