3.若ax2+ax+a+3≥0對(duì)一切實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-4,0)B.(-∞,-4)∪(0,+∞)C.[0,+∞)D.(-4,0]

分析 由題意,檢驗(yàn)a=0是否滿足條件,當(dāng)a≠0 時(shí),需滿足$\left\{\begin{array}{l}{a>0}\\{△={a}^{2}-4a(a+3)<0}\end{array}\right.$,從而解出實(shí)數(shù)a的取值范圍.

解答 解:因?yàn)閍x2+ax+a+3>0對(duì)一切實(shí)數(shù)x恒成立,
所以當(dāng)a=0時(shí),不等式為3>0,滿足題意;
當(dāng)a≠0,需滿足$\left\{\begin{array}{l}{a>0}\\{△={a}^{2}-4a(a+3)<0}\end{array}\right.$,解得a>0
總之a(chǎn)≥0
故a的取值范圍為:[0,+∞).
故選:C.

點(diǎn)評(píng) 本題考查一元二次不等式的應(yīng)用,注意聯(lián)系對(duì)應(yīng)的二次函數(shù)的圖象特征,體現(xiàn)了等價(jià)轉(zhuǎn)化和分類討論的數(shù)學(xué)思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.(1)計(jì)算:$\frac{-3+i}{2-4i}$;
(2)在復(fù)平面內(nèi),復(fù)數(shù)z=(m+2)+(m2-m-2)i對(duì)應(yīng)的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.長(zhǎng)方體被一平行于棱的平面截成體積相等的兩個(gè)幾何體,其中一個(gè)幾何體的三視圖如圖所示,則長(zhǎng)方體的體積為48.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若方程2|x-1|-kx=0有且只有一個(gè)正根,則實(shí)數(shù)k的取值范圍是{k|k=0或k≥2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某工廠隨機(jī)抽取部分工人調(diào)查其上班路上所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),若上班路上所需時(shí)間的范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100].
(1)求直方圖中a的值;
(2)如果上班路上所需時(shí)間不少于1小時(shí)的工人可申請(qǐng)?jiān)诠S住宿,若招工2400人,請(qǐng)估計(jì)所招工人中有多少名工人可以申請(qǐng)住宿;
(3)該工廠工人上班路上所需的平均時(shí)間大約是多少分鐘.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在平行四邊形ABCD中,CD=1,∠BCD=60°,BD⊥CD,矩形ADEF中DE=1,且面ADEF⊥面ABCD.
(Ⅰ)求證:BD⊥平面ECD;
(Ⅱ)求D點(diǎn)到面CEB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.$\root{3}{\sqrt{2}}$=( 。
A.2${\;}^{\frac{5}{6}}$B.2${\;}^{\frac{3}{2}}$C.2${\;}^{\frac{1}{6}}$D.2${\;}^{(\frac{1}{2})^{\frac{1}{3}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖所示,A是函數(shù)f(x)=2x的圖象上的動(dòng)點(diǎn),過(guò)點(diǎn)A作直線平行于x軸,交函數(shù)g(x)=2x+2的圖象于點(diǎn)B,若函數(shù)f(x)=2x的圖象上存在點(diǎn)C使得△ABC為等邊三角形,則稱A為函數(shù)f(x)=2x上的好位置點(diǎn).函數(shù)f(x)=2x上的好位置點(diǎn)的個(gè)數(shù)為( 。
A.0B.1C.2D.大于2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=ax2-x,若對(duì)任意x1,x2∈[2,+∞),且x1≠x2,不等式$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.$(\frac{1}{2},+∞)$B.$[\frac{1}{2},+∞)$C.$(\frac{1}{4},+∞)$D.$[\frac{1}{4},+∞)$

查看答案和解析>>

同步練習(xí)冊(cè)答案