5.拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)O是坐標(biāo)原點(diǎn),過點(diǎn)O、F的圓與拋物線C的準(zhǔn)線相切,且圓的面積9π,則拋物線的方程為4.

分析 根據(jù)過點(diǎn)O、F的圓與拋物線C的準(zhǔn)線相切,可得圓的圓心到準(zhǔn)線的距離等于圓的半徑,由此可求p的值.

解答 解:∵過點(diǎn)O、F的圓與拋物線C的準(zhǔn)線相切,
∴圓心到準(zhǔn)線的距離等于圓的半徑,
∵圓面積為9π,∴圓的半徑為3,
又∵圓心在OF的垂直平分線上,|OF|=$\frac{p}{2}$,
∴$\frac{p}{2}+\frac{p}{4}$=3,
∴p=4
故答案為:4.

點(diǎn)評 本題考查圓與圓錐曲線的綜合,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.對于R上可導(dǎo)的任意函數(shù)f(x),若滿足$\frac{1-x}{f′(x)}$≥0,則必有( 。
A.f(0)+f(2)<2f(1)B.f(0)+f(2)≤2f(1)C.f(0)+f(2)>2f(1)D.f(0)+f(2)≥2f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知雙曲線方程$\frac{x^2}{4}$-$\frac{y^2}{3}$=1.則該雙曲線的左焦點(diǎn)坐標(biāo)是(-2$\sqrt{7}$,0),離心率為$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.cos$\frac{5π}{3}$的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=$\frac{1}{2}$x2+(2a3-a2)lnx-(a2+2a-1)x,x=1為其極值點(diǎn),則實(shí)數(shù)a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ln(x+a)-x2-x在x=0處取得極值.
(1)求實(shí)數(shù)a的值;
(2)若關(guān)于x的方程,f(x)=-$\frac{5}{2}$x+b在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;
(3)證明:對任意的正整數(shù)n,不等式ln$\frac{n+2}{2}$<$\frac{1}{1}$+$\frac{1}{2}$+…+$\frac{1}{n}$都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖是求S=1+2+3+5+…+99的程序流程圖,其中①應(yīng)為(  )
A.A≤97?B.A<99?C.A≤99?D.A≤101?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若a>-1,則$\frac{{a}^{2}+3a+3}{a+1}$的最小值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知a>0,b>0.
(1)求證:$\frac{a}{\sqrt}$+$\frac{\sqrt{a}}$≥$\sqrt{a}$+$\sqrt$;
(2)若a+b=1,求證:$\frac{1}{a}$+$\frac{1}$+$\frac{1}{ab}$≥8.

查看答案和解析>>

同步練習(xí)冊答案