15.對(duì)于R上可導(dǎo)的任意函數(shù)f(x),若滿足$\frac{1-x}{f′(x)}$≥0,則必有( 。
A.f(0)+f(2)<2f(1)B.f(0)+f(2)≤2f(1)C.f(0)+f(2)>2f(1)D.f(0)+f(2)≥2f(1)

分析 對(duì)x分段討論,解不等式求出f′(x)的符號(hào),判斷出f(x)的單調(diào)性,利用函數(shù)的單調(diào)性比較出函數(shù)值f(0),f(2)與f(1)的大小關(guān)系,利用不等式的性質(zhì)得到選項(xiàng)即可.

解答 解:∵$\frac{1-x}{f′(x)}$≥0,
∴x≥1時(shí),f′(x)<0;x≤1時(shí),f′(x)>0,
∴f(x)在(1,+∞)為減函數(shù),在(-∞,1)上為增函數(shù),
∴f(x)max=f(1),
∴f(1)>f(0)
 f(1)>f(2)
∴f(0)+f(2)<2f(1),
故選:A.

點(diǎn)評(píng) 利用導(dǎo)函數(shù)的符號(hào)能判斷函數(shù)的單調(diào)性,當(dāng)導(dǎo)函數(shù)大于0則函數(shù)遞增;當(dāng)導(dǎo)函數(shù)小于0則函數(shù)單調(diào)遞減.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\sqrt{{x}^{2}-2x+1}$+|x+a|.
(1)當(dāng)a=2時(shí),求f(x)的最小值;
(2)當(dāng)x∈[$\frac{2}{3}$,1]時(shí),f(x)≤x恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow{a}$=(3,x),$\overrightarrow$=(-2,2)
(1)若向量$\overrightarrow{a}$⊥$\overrightarrow$,求實(shí)數(shù)x的值;
(2)若向量$\overrightarrow$-$\overrightarrow{a}$與3$\overrightarrow{a}$+2$\overrightarrow$共線,求實(shí)數(shù)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知命題p:?x0∈R,使sinx0=$\frac{{\sqrt{5}}}{2}$;命題q:?x∈(0,+∞),x>sinx,則下列判斷正確的是( 。
A.p為真B.¬q為假C.p∧q為真D.p∨q為假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$a={16^{\frac{1}{3}}}$,$b={2^{\frac{4}{5}}}$,$c={5^{\frac{2}{3}}}$,則( 。
A.b>a>cB.a>c>bC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=x2-alnx在x=1處取極值,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一元二次不等式(x+2)(x-3)<0的解集為(  )
A.{x|x<-2或x>3}B.{x|-3<x<2}C.{x|x<-3或x>2}D.{x|-2<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=-x4+ax3+$\frac{1}{2}$bx2的單調(diào)遞減區(qū)間為(0,$\frac{1}{2}$),(1,+∞).
(1)求實(shí)數(shù)a,b的值;
(2)試求當(dāng)x∈[0,2]時(shí),函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)O是坐標(biāo)原點(diǎn),過點(diǎn)O、F的圓與拋物線C的準(zhǔn)線相切,且圓的面積9π,則拋物線的方程為4.

查看答案和解析>>

同步練習(xí)冊(cè)答案