【題目】如圖,圓形紙片的圓心為O,半徑為5 cm,該紙片上的等邊三角形ABC的中心為O。D、E、F為圓O上的點,△DBC,△ECA,△FAB分別是以BCCA,AB為底邊的等腰三角形。沿虛線剪開后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱錐。當△ABC的邊長變化時,所得三棱錐體積(單位:cm3)的最大值為_______。

【答案】

【解析】如下圖,連接DOBC于點G,設DE,F重合于S點,正三角形的邊長為x(x>0),則 .

,

三棱錐的體積 .

,x>0,則,

,即,得,易知處取得最大值.

.

點睛:對于三棱錐最值問題,需要用到函數(shù)思想進行解決,本題解決的關鍵是設好未知量,利用圖形特征表示出三棱錐體積.當體積中的變量最高次是2次時可以利用二次函數(shù)的性質(zhì)進行解決,當變量是高次時需要用到求導的方式進行解決.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】【2017四川宜賓二診】如甲圖所示,在矩形中, , 的中點,將沿折起到位置,使平面平面,得到乙圖所示的四棱錐

求證: 平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A(x1 , y1),B(x2 , y2)是函數(shù)f(x)= 的圖象上的任意兩點(可以重合),點M在直線x= 上,且 =
(1)求x1+x2的值及y1+y2的值;
(2)已知S1=0,當n≥2時,Sn=f( )+f( )+f( )+…+f( ),求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】Sn為等比數(shù)列的前n項和,已知S2=2,S3=-6.

(1)求的通項公式;

(2)求Sn,并判斷Sn+1SnSn+2是否成等差數(shù)列。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】把函數(shù)f(x)=sin(2x+φ)(|φ|< )的圖象上的所有點向左平移 個單位長度,得到函數(shù)y=g(x)的圖象,且g(﹣x)=g(x),則(
A.y=g(x)在(0, )單調(diào)遞增,其圖象關于直線x= 對稱
B.y=g(x)在(0, )單調(diào)遞增,其圖象關于直線x= 對稱
C.y=g(x)在(0, )單調(diào)遞減,其圖象關于直線x= 對稱
D.y=g(x)在(0, )單調(diào)遞減,其圖象關于直線x= 對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(4,3), =(2,﹣1),O為坐標原點,P是直線AB上一點.
(1)若點P是線段AB的中點,求向量 與向量 夾角θ的余弦值;
(2)若點P在線段AB的延長線上,且| |= | |,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,PA⊥平面ABCD,PA= ,AB=1.AD=2.∠BAD=120°,E,F(xiàn),G,H分別是BC,PB,PC,AD的中點.
(Ⅰ)求證:PH∥平面GED;
(Ⅱ)過點F作平面α,使ED∥平面α,當平面α⊥平面EDG時,設PA與平面α交于點Q,求PQ的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,a2=2,an+2=(1+cos2 )an+sin2 ,則該數(shù)列的前10項和為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:

(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計A的概率;

(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關:

箱產(chǎn)量<50 kg

箱產(chǎn)量≥50 kg

舊養(yǎng)殖法

新養(yǎng)殖法

(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進行比較.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

同步練習冊答案