【題目】已知且,設(shè):函數(shù)在上單調(diào)遞減, :函數(shù)的圖象與軸交于不同的兩點.如果真, 假,求實數(shù)的取值范圍.
【答案】
【解析】
試題分析:根據(jù)對數(shù)函數(shù)的單調(diào)性我們易判斷出命題p為真命題時參數(shù)a的取值范圍,及命題p為假命題時參數(shù)a的取值范圍;根據(jù)二次函數(shù)零點個數(shù)的確定方法,我們易判斷出命題q為真命題時參數(shù)a的取值范圍,及命題q為假命題時參數(shù)a的取值范圍;由p且q為假命題,p或q為真命題,我們易得到p與q一真一假,分類討論,分別構(gòu)造關(guān)于x的不等式組,解不等式組即可得到答案.
詳解:若p為真,則0<a<1.若q為真,
則△>0即(2a﹣3)2﹣4>0解得a<或a>.
∵p且q為假,p或q為真,
∴p與q中有且只有一個為真命題.(a>0且a≠1)
若p真q假,則
∴≤a<1
若p假q真,則
∴a
綜上所述,a的取值范圍為:[,1)∪(,+∞).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在坐標(biāo)原點,焦點在x軸上,左頂點為A,左焦點為,點在橢圓C上,直線與橢圓C交于E,F兩點,直線AE,AF分別與y軸交于點M,N
Ⅰ求橢圓C的方程;
Ⅱ在x軸上是否存在點P,使得無論非零實數(shù)k怎樣變化,總有為直角?若存在,求出點P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ=2acos θ(a>0),過點P(-2,-4)的直線l: (t為參數(shù))與曲線C相交于M,N兩點.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需要,兩種原料,已知生產(chǎn)1噸每種產(chǎn)品所需原料及每天原料的可用限額如表所示.如果生產(chǎn)1噸甲、乙產(chǎn)品可獲得利潤分別為3萬元、4萬元,則該企業(yè)每天可獲得最大利潤為( 。
甲 | 乙 | 原料限額 | |
(噸) | 3 | 2 | 10 |
(噸) | 1 | 2 | 6 |
A. 10萬元B. 12萬元C. 13萬元D. 14萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,若將判斷框內(nèi)“”改為關(guān)于的不等式“”且要求輸出的結(jié)果不變,則正整數(shù)的取值是
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱臺中,和均為等邊三角形,四邊形為直角梯形,平面,,分別為的中點.
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲商店某種商品4月份(30天,4月1日為第一天)的銷售價格P(元)與時間t(天)的函數(shù)關(guān)系如圖所示(1),該商品日銷售量Q(件)與時間t(天)的函數(shù)關(guān)系如圖(2)所示.
(1)(2)
(1)寫出圖(1)表示的銷售價格與時間的函數(shù)關(guān)系式,寫出圖(2)表示的日銷售量與時間的函數(shù)關(guān)系式及日銷售金額M(元)與時間的函數(shù)關(guān)系式.
(2)乙商店銷售同一種商品,在4月份采用另一種銷售策略,日銷售金額N(元)與時間t(天)之間的函數(shù)關(guān)系式為,試比較4月份每天兩商店銷售金額的大小關(guān)系。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年央視大型文化節(jié)目《經(jīng)典詠流傳》的熱播,在全民中掀起了誦讀詩詞的熱潮,節(jié)目組為熱心觀眾給以獎勵,要從名觀眾中抽取名幸運觀眾.先用簡單隨機抽樣從人中剔除人,剩下的人再按系統(tǒng)抽樣方法抽取人,則在人中,每個人被抽取的可能性( )
A. 均不相等B. 都相等,且為
C. 不全相等D. 都相等,且為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|f(x)=lg(x﹣1)},集合B={y|y=2x+a,x≤0}.
(1)若a,求A∪B;
(2)若A∩B=,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com