【題目】某手機賣場對市民進行國產手機認可度的調查,隨機抽取名市民,按年齡(單位:歲)進行統(tǒng)計和頻數分布表和頻率分布直線圖如下:
分組(歲) | 頻數 |
合計 |
(1)求頻率分布表中、的值,并補全頻率分布直方圖;
(2)在抽取的這名市民中,按年齡進行分層抽樣,抽取人參加國產手機用戶體驗問卷調查,現(xiàn)從這人中隨機選取人各贈送精美禮品一份,設這名市民中年齡在內的人數,求的分布列及數學期望.
科目:高中數學 來源: 題型:
【題目】已知橢圓(),四點, , , 中恰有三點在橢圓上.
(1)求的方程;
(2)設直線不經過點且與相交于兩點,若直線與直線的斜率之和為,證明: 過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中, 底面,底面是直角梯形, , , , 是的中點.
(1)求證:平面平面;
(2)若二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】求滿足下列條件的直線的方程:
(1)經過兩條直線2x﹣3y+10=0和3x+4y﹣2=0的交點,且垂直于直線3x﹣2y+4=0;
(2)經過兩條直線2x+y﹣8=0和x﹣2y+1=0的交點,且平行于直線4x﹣3y﹣7=0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若任意,不等式恒成立,求實數的取值范圍;
(2)求證:對任意, ,都有成立;
(3)對于給定的正數,有一個最大的正數,使得整個區(qū)間上,不等式恒成立,求出的解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知直線關于直線對稱的直線為,直線與橢圓分別交于點、和、,記直線的斜率為.
(Ⅰ)求的值;
(Ⅱ)當變化時,試問直線是否恒過定點? 若恒過定點,求出該定點坐標;若不恒過定點,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com