【題目】已知橢圓()的左右焦點分別為、,離心率.過的直線交橢圓于、兩點,三角形的周長為.
(1)求橢圓的方程;
(2)若弦,求直線的方程.
【答案】(1);(2).
【解析】試題分析:(1)利用橢圓的離心率以及的周長為8,求出a,c,b,即可得到橢圓的方程,
(2)求出直線方程與橢圓方程聯(lián)立,點的坐標為, 的坐標為求出A,B坐標,然后求解三角形的面積即可.
試題解析:
(1)三角形的周長,所以.
離心率,所以,則.
橢圓的方程為:
(2)設點的坐標為, 的坐標為, 的斜率為(顯然存在)
.
.
點睛: 本題主要考查直線與圓錐曲線位置關系,所使用方法為韋達定理法:因直線的方程是一次的,圓錐曲線的方程是二次的,故直線與圓錐曲線的問題常轉化為方程組關系問題,最終轉化為一元二次方程問題,故用韋達定理及判別式是解決圓錐曲線問題的重點方法之一,尤其是弦中點問題,弦長問題,可用韋達定理直接解決,但應注意不要忽視判別式的作用.
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)= x+m在區(qū)間 上的最小值為3,求常數(shù)m的值及此函數(shù)當x∈[a,a+π](其中a可取任意實數(shù))時的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)當時,求函數(shù)的單調區(qū)間;
(Ⅱ)當,時,證明:(其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三年級共有學生195人,其中女生105人,男生90人.現(xiàn)采用按性別分層抽樣的方法,從中抽取13人進行問卷調查.設其中某項問題的選擇分別為“同意”、“不同意”兩種,且每人都做了一種選擇.下面表格中提供了被調查人答卷情況的部分信息.
同意 | 不同意 | 合計 | |
女學生 | 4 | ||
男學生 | 2 |
(Ⅰ)完成上述統(tǒng)計表;
(Ⅱ)根據(jù)上表的數(shù)據(jù)估計高三年級學生該項問題選擇“同意”的人數(shù);
(Ⅲ) 從被抽取的女生中隨機選取2人進行訪談,求選取的2名女生中至少有一人選擇“同意”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:x2+y2﹣2x+4my+4m2=0,圓C1:x2+y2=25,以及直線l:3x﹣4y﹣15=0.
(1)求圓C1:x2+y2=25被直線l截得的弦長;
(2)當m為何值時,圓C與圓C1的公共弦平行于直線l;
(3)是否存在m,使得圓C被直線l所截的弦AB中點到點P(2,0)距離等于弦AB長度的一半?若存在,求圓C的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的多面體中, 為直角梯形, , ,四邊形為等腰梯形, ,已知, , .
(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,以為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為(),為上一點,以為邊作等邊三角形,且、、三點按逆時針方向排列.
(Ⅰ)當點在上運動時,求點運動軌跡的直角坐標方程;
(Ⅱ)若曲線: ,經(jīng)過伸縮變換得到曲線,試判斷點的軌跡與曲線是否有交點,如果有,請求出交點的直角坐標,沒有則說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左,右焦點為,左,右頂點為,過點的
直線分別交橢圓于點.
(1)設動點,滿足,求點的軌跡方程;
(2)當時,求點的坐標;
(3)設,求證:直線過軸上的定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某手機賣場對市民進行國產(chǎn)手機認可度的調查,隨機抽取名市民,按年齡(單位:歲)進行統(tǒng)計和頻數(shù)分布表和頻率分布直線圖如下:
分組(歲) | 頻數(shù) |
合計 |
(1)求頻率分布表中、的值,并補全頻率分布直方圖;
(2)在抽取的這名市民中,按年齡進行分層抽樣,抽取人參加國產(chǎn)手機用戶體驗問卷調查,現(xiàn)從這人中隨機選取人各贈送精美禮品一份,設這名市民中年齡在內的人數(shù),求的分布列及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com