8.7個(gè)自主招生的指標(biāo),分給4個(gè)不同的班級,試問:每個(gè)班級都有指標(biāo)的分配方法共有多少種?

分析 本題采用隔板法,7個(gè)自主招生的指標(biāo)相當(dāng)于7個(gè)小球.將7個(gè)小球排成一排,插入3塊隔板,隔板將7個(gè)元素分成4部分,每一部分至少一個(gè),因?yàn)樾∏蚨际窍嗤那,所以隔板法適合.

解答 解:由題意知本題采用隔板法,7個(gè)自主招生的指標(biāo)相當(dāng)于7個(gè)小球.
將7個(gè)小球排成一排,插入3塊隔板,
隔板將7個(gè)元素分成4部分,每一部分至少一個(gè),
∴共有分法C63=20(種).

點(diǎn)評 本題考查排列組合的應(yīng)用,是一個(gè)基礎(chǔ)題,解題時(shí)這是一種常用的方法,用一類這種問題都可以采用這種方法,這是多題一解的問題.之一舉一反三.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=x+ex-a,g(x)=ln(x+2)-4ea-x,其中e為自然對數(shù)的底數(shù),若存在實(shí)數(shù)x0,使f(x0)-g(x0)=3成立,則實(shí)數(shù)a的值為( 。
A.-ln2-1B.-1+ln2C.-ln2D.ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\frac{{a{x^2}+1}}{e^x}$(e為自然對數(shù)的底數(shù)),函數(shù)g(x)滿足g′(x)=f′(x)+2f(x),其中f′(x),g′(x)分別為函數(shù)f(x)和g(x)的導(dǎo)函數(shù),若函數(shù)g(x)在[-1,1]上是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍為(  )
A.a≤1B.-$\frac{1}{3}$≤a≤1C.a>1D.a≥-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=(x+1)lnx,g(x)=a(x-1)(a∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≥g(x)對任意的x∈[1,+∞)恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)求證:ln2•ln3…lnn>$\frac{{2}^{n}}{n(n+1)}$(n≥2,n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知由一組樣本數(shù)據(jù)確定的回歸直線方程為y=1.5x+1,且$\overline x$=2,發(fā)現(xiàn)有兩組數(shù)據(jù)(2.4,2.8)與(1.6,5.2)誤差較大,去掉這兩組數(shù)據(jù)后,重新求得回歸直線的斜率為1,那么當(dāng)x=4時(shí),y的估計(jì)值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若P,S分別變?yōu)椋簆:(x-m)2>3(x-m),s:x2+3x-4<0,若x∈p是x∈s的必要不充分條件,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某校高二年段共有10個(gè)班級,現(xiàn)從外地轉(zhuǎn)入4名學(xué)生,要安排到該年段的兩個(gè)班級且每班安排2名,則不同的安排方法共有( 。
A.540種B.270種C.180種D.90種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=-$\frac{a}{2}$x2+(a-1)x+lnx.
(Ⅰ)若a>-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若g(x)=$\frac{a}{2}$x2+(1-2a)x+f(x)有且只有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在四棱錐P-ABCD中,AB∥CD,AB=$\frac{1}{2}$CD=1,BP=BC=$\sqrt{2}$,PC=2,AB⊥平面PBC,F(xiàn)為PC的中點(diǎn).
(1)求證:BF∥平面PAD;
(2)求四棱錐P-ABCD的體積.

查看答案和解析>>

同步練習(xí)冊答案