12.對于雙曲線C有命題:若雙曲線C的標(biāo)準(zhǔn)方程是$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),則雙曲線C的漸近線是bx±ay=0.該命題的逆命題是若雙曲線C的漸近線是bx±ay=0,則雙曲線C的標(biāo)準(zhǔn)方程是$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0);判斷該命題的真假為假.

分析 根據(jù)逆命題的寫法,即可得出結(jié)論.

解答 解:若雙曲線C的漸近線是bx±ay=0,則雙曲線C的標(biāo)準(zhǔn)方程是$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),是假命題.
故答案為:若雙曲線C的漸近線是bx±ay=0,則雙曲線C的標(biāo)準(zhǔn)方程是$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0);假.

點評 本題考查逆命題,考查命題的真假判斷,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在一段時間內(nèi),某種商品價格x(萬元)和需求量y(t)之間的一組數(shù)據(jù)為:
價 格x1.41.61.822.2
需求量y1210753
(1)進(jìn)行相關(guān)性檢驗;
(2)如果x與y之間具有線性相關(guān)關(guān)系,求出回歸直線方程,并預(yù)測當(dāng)價格定為1.9萬元,需求量大約是多少?(精確到0.01t)
參考公式及數(shù)據(jù):$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,r=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sqrt{(\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2})(\sum_{i=1}^{n}{y}_{i}^{2}-n{\overline{y}}^{2})}}$,$\sqrt{21.28}$≈4.61,$\sum_{i=1}^5{{x_i}{y_i}}$=62   $\sum_{i=1}^5{{x_i}^2}$=16.6  $\sum_{i=1}^5{{y_i}^2}$=327
相關(guān)性檢驗的臨界值表:
n-212345678910
小概率0.011.0000.9900.9590.9170.8740.8340.7980.7650.7350.708

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知命題p:|x-4|≤6,q:x2-m2-2x+1≤0(m>0),若¬p是¬q的必要不充分條件,則實數(shù)m的取值范圍為[9,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=$\frac{lnx}{x}$的單調(diào)遞減區(qū)間是( 。
A.(0,$\frac{1}{e}$)B.($\frac{1}{e}$,+∞)C.(e,+∞)D.(0,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),點D(-2,0)為橢圓C的左頂點,點D與橢圓C的短軸端點的距離為$\sqrt{5}$,過點M(1,0)的直線l與橢圓C交于A,B兩點.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)是否存在直線l,使得$\overrightarrow{AM}$=$\frac{1}{3}$$\overrightarrow{MB}$,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=lnx-(1+a)x-1,g(x)=-$\frac{lnx}{x}$-a(x+1),其中a∈R
(1)若函數(shù)f(x)在其定義域上不是單調(diào)函數(shù),求實數(shù)a的取值范圍
(2)如果函數(shù)p(x),q(x)在公共定義域D上滿足p(x)<q(x),那么就稱p(x)為q(x)的“底下函數(shù)”.證明:當(dāng)a<1時,f(x)為g(x)的“底下函數(shù)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知i為虛數(shù)單位,$(2+i)\overline z=-1+2i$,則復(fù)數(shù)z=( 。
A.iB.-iC.$\frac{4}{3}+i$D.$\frac{4}{3}-i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知a,b,c分別是△ABC的三個內(nèi)角A、B、C的對邊.
(Ⅰ)若acosA=bcosB,試判斷△ABC的形狀.
(Ⅱ)若△ABC面積為$\frac{{\sqrt{3}}}{2},c=2,A=60°$,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\sqrt{x+2}$-$\frac{1}{x-3}$.
(1)求函數(shù)y=f(x)的定義域;
(2)若函數(shù)y=f(x)+a在區(qū)間(-2,2)上有且僅有一個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案