7.已知a,b,c分別是△ABC的三個內(nèi)角A、B、C的對邊.
(Ⅰ)若acosA=bcosB,試判斷△ABC的形狀.
(Ⅱ)若△ABC面積為$\frac{{\sqrt{3}}}{2},c=2,A=60°$,求a,b的值.

分析 (Ⅰ)利用正弦定理可將acosA=bcosB轉(zhuǎn)化為sinAcosA=sinBcosB,再利用二倍角的正弦與三角形的性質(zhì)計算即可.
(Ⅱ)利用△ABC面積為$\frac{\sqrt{3}}{2}$,c=2,A=60°,直接求出b,通過余弦定理求出a的值即可.

解答 解:(Ⅰ)∵acosA=bcosB,
∴由正弦定理得:sinAcosA=sinBcosB,即sin2A=sin2B,
∵0<A,B<π,
∴2A=2B或2A=π-2B,即A=B或A+B=$\frac{π}{2}$.
∴△ABC為等腰三角形或直角三角形.
(Ⅱ)∵△ABC面積為$\frac{{\sqrt{3}}}{2},c=2,A=60°$,
∴$\frac{\sqrt{3}}{2}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}$bcsin60°=$\frac{\sqrt{3}}{2}$b,
∴b=1,
由余弦定理可得,a2=b2+c2-2bccosA=1+4-4×$\frac{1}{2}$=3.
∴a=$\sqrt{3}$.

點評 本題考查三角形的形狀判斷,考查正弦定理、余弦定理、三角形的面積公式的應用,考查計算能力,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)f(x)=x2-x+a,則f(m)=f(1-m)(填“<”“>”或“=”)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.對于雙曲線C有命題:若雙曲線C的標準方程是$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),則雙曲線C的漸近線是bx±ay=0.該命題的逆命題是若雙曲線C的漸近線是bx±ay=0,則雙曲線C的標準方程是$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0);判斷該命題的真假為假.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知cosα=$\frac{4}{5}$,α∈(0,π),則tanα=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知命題p:實數(shù)m滿足:方程$\frac{x^2}{m-3a}+\frac{y^2}{m-4a}=1\;(a>0)$表示雙曲線;
命題q:實數(shù)m滿足方程$\frac{x^2}{m-1}+\frac{y^2}{2-m}=1$表示焦點在y軸上的橢圓.
(1)若命題q為真命題,求m的取值范圍;
(2)若p是q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某城市理論預測2000年到2004年人口總數(shù)與年份的關系如表所示
年份200x(年)01234
人口數(shù) y (十萬)5781119
(Ⅰ)請畫出上表數(shù)據(jù)的散點圖;
(Ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;
(Ⅲ)據(jù)此估計2005年該城市人口總數(shù).
參考數(shù)值:0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30,
參考公式:用最小二乘法求線性回歸方程系數(shù)公式 $\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.(1)求函數(shù)$y=1-2sin(x+\frac{π}{6})$的最大值和最小值及相應的x的值;
(2)已知函數(shù)$y=acos(2x+\frac{π}{3})+3$,$x∈[0,\frac{π}{2}]$的最大值為4,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設y=f″(x)是y=f′(x)的導數(shù).某同學經(jīng)過探究發(fā)現(xiàn),任意一個三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有對稱中心(x0,f(x0)),其中x0滿足f″(x0)=0.已知f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$,則f($\frac{1}{2017}$)+f($\frac{2}{2017}$)+f($\frac{3}{2017}$)+…+f($\frac{2016}{2017}$)=( 。
A.2013B.2014C.2015D.2016

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若直線x-2y+2=0經(jīng)過橢圓的一個焦點和一個頂點,則該橢圓的標準方程為( 。
A.$\frac{{x}^{2}}{5}$+y2=1B.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{5}$=1
C.$\frac{{x}^{2}}{5}$+y2=1或$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{5}$=1D.以上答案都不對

查看答案和解析>>

同步練習冊答案