13.已知拋物線y2=-x與直線y=k(x+1)相交于A,B兩點.
(1)求證:OA⊥OB;
(2)是否存k使△OAB的面積等于1,若存在求k的值,若不存在說明理由.

分析 (1)畫出圖象,利用韋達(dá)定理求出直線的斜率,通過斜率的乘積為-1,證明OA⊥OB;
(2)求出三角形的面積,然后利用方程是否有解,得出結(jié)果.

解答 解:(1)如圖所示,由拋物線y2=-x與直線y=k(x+1),消去x得,ky2+y-k=0.

設(shè)A(x1,y1)、B(x2,y2),由根與系數(shù)的關(guān)系得y1•y2=-1,y1+y2=-$\frac{1}{k}$.
∵A、B在拋物線y2=-x上,
∴y1=-x1,y2=-x2,∴y1•y2=x1x2
∵kOA•kOB=$\frac{{y}_{1}}{{x}_{1}}•\frac{{y}_{2}}{{x}_{2}}$═-1,∴OA⊥OB.
(2)設(shè)直線與x軸交于點N,顯然k≠0.
令y=0,得x=-1,即N(-1,0).
∵S△OAB=S△OAN+S△OBN
=|ON||y1|+|ON||y2|=|ON|•|y1-y2|,
∴S△OAB=1•$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$═$\sqrt{4+\frac{1}{{k}^{2}}}$=1,方程不成立,
不存在k使△OAB的面積等于1.

點評 本題考查拋物線與直線的位置關(guān)系的應(yīng)用,考查分析問題解決問題的能力,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.飛機(jī)的航線和山頂在同一個鉛垂直平面內(nèi),已知飛機(jī)的高度為海拔15000m,速度為1000km/h,飛行員先看到山頂?shù)母┙菫?8°,經(jīng)過108s后又看到山頂?shù)母┙菫?8°,則山頂?shù)暮0胃叨葹椋ā 。?table class="qanwser">A.(15-18$\sqrt{3}$sin18°cos78°)kmB.(15-18$\sqrt{3}$sin18°sin78°)kmC.(15-20$\sqrt{3}$sin18°cos78°)kmD.(15-20$\sqrt{3}$sin18°sin78°)km

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|x+3|,g(x)=m-2|x-11|,若2f(x)≥g(x+4)恒成立,實數(shù)m的最大值為t
(1)求實數(shù)t
(2)已知實數(shù)x、y、z滿足2x2+3y2+6z2=a(a>0),且x+y+z的最大值是$\frac{t}{20}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如果復(fù)數(shù)在z=$\frac{3-i}{2+i}$,則|z|等于( 。
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知非零向量$\overrightarrow{a}$,$\overrightarrow$,滿足|$\overrightarrow{a}$|=1且($\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+$\overrightarrow$)=$\frac{1}{2}$.$\overrightarrow{a}$,$\overrightarrow$的夾角為45°,求|$\overrightarrow{a}$-$\overrightarrow$|的值( 。
A.$\frac{1}{2}$B.1C.$\frac{\sqrt{2}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知關(guān)于x的不等式2x-1>m(x2-1).
(1)是否存在實數(shù)m,使不等式對任意的x∈R恒成立?并說明理由.
(2)若對于m∈[-2,2]不等式恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.sin(-945°)的值為( 。
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.-$\frac{\sqrt{3}}{2}$D..$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=a{x^3}-\frac{3}{2}(a+2){x^2}+6x-3$
(Ⅰ) 當(dāng)a=1時,求函數(shù)f(x)的極小值;
(Ⅱ)當(dāng)a≤0時,試討論曲線y=f(x)與x軸公共點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.參數(shù)方程$\left\{\begin{array}{l}x=cosθ\\ y=1+cosθ\end{array}\right.$(θ∈R)化為普通方程是x2+(y-1)2=1.

查看答案和解析>>

同步練習(xí)冊答案