【題目】如圖, 分別是橢圓的左、右焦點(diǎn), 是橢圓的頂點(diǎn), 是直線與橢圓的另一個(gè)交點(diǎn), .

(1)求橢圓的離心率;

(2)已知的面積為,求的值.

【答案】(1) ;(2) .

【解析】試題分析:(1)由題意知為等邊三角形,從而得到的關(guān)系式,進(jìn)而求得離心率;(2)首先根據(jù)橢圓的性質(zhì)得到的關(guān)系式,然后設(shè)出直線的方程,并代入橢圓方程得到點(diǎn)坐標(biāo),從而求得,再根據(jù)三角形面積公式求得的值,進(jìn)而求得橢圓的方程;別解:設(shè),然后利用橢圓的定義表示出的長(zhǎng),再利用余弦定理得到的關(guān)系式,從而根據(jù)三角形面積公式求得的值,進(jìn)而求得橢圓的方程.

試題解析:

1)由題意可知, 為等邊三角形, ,所以.

2)( 方法一).

直線的方程可為

將其代入橢圓方程,得

所以

解得, ,

(方法二)設(shè). 因?yàn)?/span>,所以

由橢圓定義可知,

再由余弦定理可得,

知, ,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)某學(xué)校為了支持生物課程基地研究植物生長(zhǎng),計(jì)劃利用學(xué)?盏亟ㄔ煲婚g室內(nèi)面積為900m2的矩形溫室,在溫室內(nèi)劃出三塊全等的矩形區(qū)域,分別種植三種植物,相鄰矩形區(qū)域之間間隔1m,三塊矩形區(qū)域的前、后與內(nèi)墻各保留 1m 寬的通道,左、右兩塊矩形區(qū)域分別與相鄰的左右內(nèi)墻保留 3m 寬的通道,如圖.設(shè)矩形溫室的室內(nèi)長(zhǎng)為(m),三塊種植植物的矩形區(qū)域的總面積(m2).

(1)求關(guān)于的函數(shù)關(guān)系式;

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中, .

(Ⅰ)證明:

(Ⅱ)平面 平面, ,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面內(nèi),定點(diǎn)A,B,C,D滿足| |=| |=| |,| || |=| || |=| || |=﹣4,動(dòng)點(diǎn)P,M滿足| |=2, = ,則| |的最大值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角中,A、B、C分別為三邊a,b,c所對(duì)的角。若,且,a+c的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x2﹣1|+x2+kx,且定義域?yàn)椋?,2).
(1)求關(guān)于x的方程f(x)=kx+3在(0,2)上的解;
(2)若關(guān)于x的方程f(x)=0在(0,2)上有兩個(gè)的解x1 , x2 , 求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某技術(shù)公司新開發(fā)了A,B兩種新產(chǎn)品,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于82為正品,小于82為次品,現(xiàn)隨機(jī)抽取這兩種產(chǎn)品各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:

測(cè)試指標(biāo)

[70,76)

[76,82)

[82,88)

[88,94)

[94,100]

產(chǎn)品A

8

12

40

32

8

產(chǎn)品B

7

18

40

29

6


(1)試分別估計(jì)產(chǎn)品A,產(chǎn)品B為正品的概率;
(2)生產(chǎn)一件產(chǎn)品A,若是正品可盈利80元,次品則虧損10元;生產(chǎn)一件產(chǎn)品B,若是正品可盈利100元,次品則虧損20元;在(1)的前提下.記X為生產(chǎn)一件產(chǎn)品A和一件產(chǎn)品B所得的總利潤(rùn),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的公差不為零,a1=25,且a1,a11,a13成等比數(shù)列.

(1){an}的通項(xiàng)公式;

(2)a1+a4+a7+…+a3n2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的極坐標(biāo)方程為 ρ=2cosθ,直線l的極坐標(biāo)方程為ρsin(θ+ )=m.若直線l與曲線C有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案