12.tan(-$\frac{4}{3}$π)=$-\sqrt{3}$.

分析 直接利用誘導(dǎo)公式以及特殊角的三角函數(shù)求解即可.

解答 解:tan(-$\frac{4}{3}$π)=-tan$\frac{π}{3}$=$-\sqrt{3}$
故答案為:$-\sqrt{3}$.

點(diǎn)評(píng) 本題考查三角函數(shù)的誘導(dǎo)公式的應(yīng)用,特殊角的三角函數(shù)值的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)數(shù)列{an}滿足:a1=$\sqrt{3}$,an+1=[an]+$\frac{1}{\{{a}_{n}\}}$,其中,[an]、{an}分別表示正數(shù)an的整數(shù)部分、小數(shù)部分,則a2016=3023+$\frac{\sqrt{3}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若點(diǎn)P是函數(shù)f(x)=x2-lnx上任意一點(diǎn),則點(diǎn)P到直線x-y-2=0的最小距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ax+b(a>0,a≠1)的圖象過點(diǎn)(0,-2),(2,0)
(1)求a與b的值;
(2)求x∈[-2,4]時(shí),求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖給出的是計(jì)算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{20}$的值的一個(gè)流程圖,其中判斷框內(nèi)應(yīng)填入的條件是( 。
A.i≤21B.i≤11C.i≥21D.i≥11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.雙曲線x2-3y2=9的焦距為( 。
A.4$\sqrt{3}$B.2$\sqrt{3}$C.2$\sqrt{6}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知全集U={x|-1≤x≤8},A={x|2x-1<3,x∈U},則∁UA=[2,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x-2y≥0}\\{y≥|x-2|}\end{array}\right.$,則z=2x+y的最大值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)$f(x)=\left\{\begin{array}{l}x-3,x>0\\{3^x},x≤0\end{array}\right.$,則f(f(2))的值是(  )
A.$\frac{1}{3}$B.3C.$-\frac{1}{3}$D.-3

查看答案和解析>>

同步練習(xí)冊(cè)答案