某公司有價值a萬元的一條流水線,要提高該流水線的生產(chǎn)能力,就要對其進(jìn)行技術(shù)改造,從而提高產(chǎn)品附加值,改造需要投入,假設(shè)附加值y萬元與技術(shù)改造投入x萬元之間的關(guān)系滿足:
(1)y與a-x和x的乘積成正比;
(2)x=
a
2
時,y=a2
(3)0≤
x
2(a-x)
≤t,其中為常數(shù),且t∈[0,1].
求:(Ⅰ)設(shè)y=f(x),求f(x)表達(dá)式,并求y=f(x)的定義域;
(Ⅱ)求出附加值y的最大值,并求出此時的技術(shù)改造投入.
考點(diǎn):函數(shù)與方程的綜合運(yùn)用
專題:常規(guī)題型,函數(shù)的性質(zhì)及應(yīng)用
分析:(Ⅰ)設(shè)y=k(a-x)x求k,并由0≤
x
2(a-x)
≤t求出定義域,(Ⅱ)注意對t與a的討論.
解答: 解:(Ⅰ)設(shè)y=k(a-x)x,
∵x=
a
2
時,y=a2;
∴k=4,
∴y=4(a-x)x,
∵0≤
x
2(a-x)
≤t,
∴0≤x≤
2at
1+2t
,
∴y=f(x)的定義域為[0,
2at
1+2t
],t∈[0,1].
(Ⅱ)y=4(a-x)x=-4(x-
a
2
2+a2
當(dāng)
2at
1+2t
a
2
,即
1
2
≤t≤1時,
x=
a
2
時,ymax=a2
當(dāng)
2at
1+2t
a
2
,即0≤t<
1
2
時,
y=f(x)在[0,
2at
1+2t
]上為增函數(shù),
∴當(dāng)x=
2at
1+2t
時,ymax=
8a2t
(1+2t)2
,
∴當(dāng)
1
2
≤t≤1時,投入x=
a
2
萬元時,附加值最大為ymax=a2萬元,
當(dāng)0≤t<
1
2
時,投入x=
2at
1+2t
萬元時,附加值最大為ymax=
8a2t
(1+2t)2
萬元.
點(diǎn)評:本題考查了函數(shù)表達(dá)式的求法及定義域的求法,同時考查了最值的求法及分類討論的數(shù)學(xué)思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,已知內(nèi)角A,B,C所對的邊分別為a,b,c,向量
x
=(2sinB,
3
),
y
=(2cos2B-1,cosB),且向量
x
y
共線.
(1)求角B的大。
(Ⅱ)如果b=1,求△ABC的面積S△ABC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校舉行投籃比賽,比賽規(guī)則如下:每次投籃投中一次得2分,未中扣1分,每位同學(xué)原始積分均為0分,當(dāng)累積得分少于或等于-2分則停止投籃,否則繼續(xù),每位同學(xué)最多投籃5次.且規(guī)定總共投中5、4、3次的同學(xué)分別為一、二、三等獎,獎金分別為30元、20元、10元.某班甲、乙、丙同學(xué)相約參加此活動,他們每次投籃命中的概率均為
1
2
,且互不影響.
(1)求甲同學(xué)能獲獎的概率;
(2)記甲、乙、丙三位同學(xué)獲得獎金總數(shù)為X,求X的期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,頂點(diǎn)A的坐標(biāo)為(1,4),∠ABC的平分線所在直線方程為x-2y=0,∠ACB的平分線所在直線方程為x+y-1=0,求BC邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2x+2mcosx+4m-1,m∈R.
(1)當(dāng)m=
1
2
時,求函數(shù)的最值并求出對應(yīng)的x值;
(2)如果對于區(qū)間(-
π
2
π
2
]上的任意一個x,都有f(x)≤5恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinθ+cosθ=
1
5
,其中θ是△ABC的一個內(nèi)角.
(1)求sinθcosθ的值;
(2)判斷△ABC是銳角三角形還是鈍角三角形;
(3)求sinθ-cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
a
b
a
=(sinx,cosx),
b
=(cos(x+
π
3
),sin(x+
π
3
)).
(1)求f(
25
6
π)的值;
(2)設(shè)α∈(0,π),f(
α
2
)=
2
2
,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x2-(k2+k+1)x+15,g(x)=k2x-k,其中k∈R.
(1)若f(x)+g(x)≥0,對x∈[1,4)恒成立,求實數(shù)k的取值范圍;
(2)設(shè)函數(shù)q(x)=
g(x),x≥0
f(x),x<0
是否存在實數(shù)k,對任意給定的非零實數(shù)x1,存在唯一的非零實數(shù)x2(x2≠x1),使得q(x2)=q(x1)?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,|AB|=3,|AC|=4,|BC|=5,O為△ABC的內(nèi)心,且
AO
AB
BC
,則λ+μ=
 

查看答案和解析>>

同步練習(xí)冊答案