【題目】已知函數(shù)的圖象過點.
(1)求的值并求函數(shù)的值域;
(2)若關(guān)于的方程有實根,求實數(shù)的取值范圍;
(3)若函數(shù),則是否存在實數(shù),使得函數(shù)的最大值為?若存在,求出的值;若不存在,請說明理由.
【答案】(1), ;(2);(3)存在使得函數(shù)的最大值為0.
【解析】試題分析:(1)根據(jù)在圖象上,代入計算即可求解,因為,所以,所以,可得函數(shù)的值域為;(2)原方程等價于的圖象與直線有交點,先證明的單調(diào)性,可得到的值域,從而可得實數(shù)的取值范圍;(3)根據(jù), ,轉(zhuǎn)化為二次函數(shù)最大值問題,討論函數(shù)的最大值,求解實數(shù)即可.
試題解析:(1)因為函數(shù) 的圖象過點,
所以,即,所以 ,
所以,因為,所以,所以,
所以函數(shù)的值域為.
(2)因為關(guān)于的方程有實根,即方程有實根,
即函數(shù)與函數(shù)有交點,
令,則函數(shù)的圖象與直線有交點,
又
任取,則,所以,所以,
所以 ,
所以在R上是減函數(shù)(或由復(fù)合函數(shù)判斷為單調(diào)遞減),
因為,所以,
所以實數(shù)的取值范圍是.
(3)由題意知, ,
令,則,
當時, ,所以,
當時, ,所以(舍去),
綜上,存在使得函數(shù)的最大值為0.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在長方體ABCD﹣A1B1C1D1中,A1C1與B1D1的交點為O1 , AC與BD的交點為O.
(1)求證:直線OO1∥平面BCC1B1;
(2)若AB=BC,求證:直線BO⊥平面ACC1A1 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓的圓心為,直線.
(1)求圓心的軌跡方程;
(2)若,求直線被圓所截得弦長的最大值;
(3)若直線是圓心下方的切線,當在上變化時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若存在兩個正實數(shù)m、n,使得等式a(lnn﹣lnm)(4em﹣2n)=3m成立(其中e為自然對數(shù)的底數(shù)),則實數(shù)a的取值范圍是( )
A.(﹣∞,0)
B.(0, ]
C.[ ,+∞)
D.(﹣∞,0)∪[ ,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列4個命題: ①“若a、G、b成等比數(shù)列,則G2=ab”的逆命題;
②“如果x2+x﹣6≥0,則x>2”的否命題;
③在△ABC中,“若A>B”則“sinA>sinB”的逆否命題;
④當0≤α≤π時,若8x2﹣(8sinα)x+cos2α≥0對x∈R恒成立,則α的取值范圍是0≤α≤ .
其中真命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系內(nèi),已知點A(1,0,B(-1,0),圓的方程為,點為圓上的動點.
(1)求過點的圓的切線方程.
(2)求的最大值及此時對應(yīng)的點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某土特產(chǎn)銷售總公司為了解其經(jīng)營狀況,調(diào)查了其下屬各分公司月銷售額和利潤,得到數(shù)據(jù)如下表:
分公司名稱 | 雅雨 | 雅雨 | 雅女 | 雅竹 | 雅茶 |
月銷售額x(萬元) | 3 | 5 | 6 | 7 | 9 |
月利潤y(萬元) | 2 | 3 | 3 | 4 | 5 |
在統(tǒng)計中發(fā)現(xiàn)月銷售額x和月利潤額y具有線性相關(guān)關(guān)系.
(Ⅰ)根據(jù)如下的參考公式與參考數(shù)據(jù),求月利潤y與月銷售額x之間的線性回歸方程;
(Ⅱ)若該總公司還有一個分公司“雅果”月銷售額為10萬元,試求估計它的月利潤額是多少?(參考公式: = , = ﹣ ,其中: =112, =200).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為評估新教改對教學的影響,挑選了水平相當?shù)膬蓚平行班進行對比試驗.甲班采用創(chuàng)新教法,乙班仍采用傳統(tǒng)教法,一段時間后進行水平測試,成績結(jié)果全部落在[60,100]區(qū)間內(nèi)(滿分100分),并繪制頻率分布直方圖如圖,兩個班人數(shù)均為60人,成績80分及以上為優(yōu)良.
(1)根據(jù)以上信息填好下列2×2聯(lián)表,并判斷出有多大的把握認為學生成績優(yōu)良與班級有關(guān)?
是否優(yōu)良 | 優(yōu)良(人數(shù)) | 非優(yōu)良(人數(shù)) | 合計 |
甲 | |||
乙 | |||
合計 |
(2)以班級分層抽樣,抽取成績優(yōu)良的5人參加座談,現(xiàn)從5人中隨機選2人來作書面發(fā)言,求2人都來自甲班的概率. 下面的臨界值表供參考:
P(x2k) | 0.10 | 0.05 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
(以下臨界值及公式僅供參考 ,n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f′(x)是函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(0)=2,f′(x)﹣f(x)>ex , 則使得f(x)>xex+2ex成立的x的取值范圍是( )
A.(0,+∞)
B.(1,+∞)
C.(0,1)
D.(﹣∞,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com