【題目】下列4個(gè)命題: ①“若a、G、b成等比數(shù)列,則G2=ab”的逆命題;
②“如果x2+x﹣6≥0,則x>2”的否命題;
③在△ABC中,“若A>B”則“sinA>sinB”的逆否命題;
④當(dāng)0≤α≤π時(shí),若8x2﹣(8sinα)x+cos2α≥0對(duì)x∈R恒成立,則α的取值范圍是0≤α≤
其中真命題的序號(hào)是

【答案】②③
【解析】解:①“若a、G、b成等比數(shù)列,則G2=ab”的逆命題為“若G2=ab,則a、G、b成等比數(shù)列”,

不正確,比如a=G=b=0,則a、G、b不成等比數(shù)列,故①錯(cuò);②“如果x2+x﹣6≥0,則x>2”的否命題為“②“如果x2+x﹣6<0,則x≤2”的否命題”,

由x2+x﹣6<0,可得﹣3<x<2,推得x≤2,故②對(duì);③在△ABC中,“若A>B”“a>b”“2RsinA>2RsinB”“sinA>sinB”(R為外接圓的半徑)

則其逆否命題正確,故③對(duì);④當(dāng)0≤α≤π時(shí),若8x2﹣(8sinα)x+cos2α≥0對(duì)x∈R恒成立,即有△=64sin2α﹣32cos2α≤0,

即有1﹣2cos2α≤0,即為cos2α≥ ,可得0≤2α≤ ≤2α≤2π,

解得0≤α≤ ≤α≤π,故④錯(cuò).

所以答案是:②③.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識(shí),掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】聯(lián)合國(guó)教科文組織規(guī)定,每年的4月23日是“世界讀書日”.某校研究生學(xué)習(xí)小組為了解本校學(xué)生的閱讀情況,隨機(jī)調(diào)查了本校400名學(xué)生在這一天的閱讀時(shí)間(單位:分鐘),將時(shí)間數(shù)據(jù)分成5組:,并整理得到如下頻率分布直方圖.

(1)求的值;

(2)試估計(jì)該學(xué)校所有學(xué)生在這一天的平均閱讀時(shí)間;

(3)若用分層抽樣的方法從這400名學(xué)生中抽取50人參加交流會(huì),則在閱讀時(shí)間為的兩組中分別抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線y=ax+1與雙曲線3x2﹣y2=1相交于A、B兩點(diǎn).
(1)求AB的長(zhǎng);
(2)當(dāng)a為何值時(shí),以AB為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,側(cè)面為等邊三角形且垂直于底面

.

(1)證明: ;

(2)若直線與平面所成角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合M={x|x<2},集合N={x|0<x<1},則下列關(guān)系中正確的是(
A.M∪N=R
B.M∪RN=R
C.N∪RM=R
D.M∩N=M

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象過(guò)點(diǎn).

(1)求的值并求函數(shù)的值域;

(2)若關(guān)于的方程有實(shí)根,求實(shí)數(shù)的取值范圍;

(3)若函數(shù),則是否存在實(shí)數(shù),使得函數(shù)的最大值為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是圓O的直徑,G是AB延長(zhǎng)線上的一點(diǎn),GCD是圓O的割線,過(guò)點(diǎn)G作AG的垂線,交直線AC于點(diǎn)E,交直線 AD于點(diǎn)F,過(guò)點(diǎn)G作圓O的切線,切點(diǎn)為H.
(1)求證:C,D,E,F(xiàn)四點(diǎn)共圓;
(2)若GH=8,GE=4,求EF的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 的圖象上相鄰兩對(duì)稱軸的距離為.

(1)若,求的遞增區(qū)間;

(2)若時(shí),若的最大值與最小值之和為5,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中點(diǎn),那么( =;若E是AB的中點(diǎn),P是△ABC(包括邊界)內(nèi)任一點(diǎn).則 的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案