2.若x,y滿足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$由約束條件圍成的圖形的面積$\frac{3}{2}$.

分析 由約束條件作出可行域,求出三角形頂點(diǎn)的坐標(biāo),進(jìn)一步求出|AB|,C到AB所在直線的距離,代入三角形面積公式得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x-y+1=0}\\{x-2y=0}\end{array}\right.$,得A(-2,-1),
聯(lián)立$\left\{\begin{array}{l}{x-2y=0}\\{x+2y-2=0}\end{array}\right.$,得B(1,$\frac{1}{2}$),
∴|AB|=$\sqrt{(-2-1)^{2}+(-1-\frac{1}{2})^{2}}=\frac{3\sqrt{5}}{2}$.
又C(0,1)到直線x-2y=0的距離d=$\frac{|-2|}{\sqrt{5}}=\frac{2\sqrt{5}}{5}$,
∴由約束條件圍成的圖形的面積S=$\frac{1}{2}×\frac{3\sqrt{5}}{2}×\frac{2\sqrt{5}}{5}$=$\frac{3}{2}$.
故答案為:$\frac{3}{2}$.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若直線l1:2x-ay-1=0過點(diǎn)(1,1),則直線l1與l2:x+2y=0( 。
A.平行B.相交但不垂直C.垂直D.相交于點(diǎn)(2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)f(x)=lnx-a$\frac{2(x-1)}{1+{x}^{2}}(a≠0)$
(1)若a=1時(shí),證明x∈[1,+∞)時(shí),f(x)恒為增函數(shù);
(2)若0<x1<x2時(shí),證明:lnx2-lnx1>$\frac{2{x}_{1}({x}_{2}-{x}_{1})}{{{x}_{1}}^{2}+{{x}_{2}}^{2}}$;
(3)證明:ln(n+1)>$\frac{1}{{2}^{2}}+\frac{2}{{3}^{2}}+\frac{3}{{4}^{2}}+…+\frac{n}{(n+1)^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知全集為R,集合A={x|2≤x<4},B={x|3x-7≥8-2x},C={x|x<a}
(1)求A∩B;
(2)求A∪(∁RB);
(3)若A⊆C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.由直線x=0,x=2,曲線y=ex及x軸所圍成圖形的面積是(  )
A.e-$\frac{1}{e}$B.e-1C.e2-1D.$\frac{1}{e}$-e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知a>0,b>0,a,b,-2成等差數(shù)列,又a,b,-2適當(dāng)排序后也可成等比數(shù)列,則a+b的值等于(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知正數(shù)x,y滿足x+8y=xy,則x+2y的最小值為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.方程|x2-2x|=m有兩個(gè)不相等的實(shí)數(shù)根,則m的取值范圍是(  )
A.0<m<1B.m≥1C.m≤-1或m=0D.m>1或m=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若對(duì)任意m,n∈[-1,1],m+n≠0,都有$\frac{f(m)+f(n)}{m+n}>0$.
(1)用定義證明函數(shù)f(x)在定義域上是增函數(shù);
(2)若$f({a+\frac{1}{2}})<f({3a})$,求實(shí)數(shù)a的取值范圍;
(3)若不等式f(x)≤(1-2a)t+2對(duì)所有和x∈[-1,1],a∈[-1,1]都恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案